论文标题
部分可观测时空混沌系统的无模型预测
On Differential Privacy and Traffic State Estimation Problem for Connected Vehicles
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This letter focuses on the problem of traffic state estimation for highway networks with junctions in the form of on- and off-ramps while maintaining differential privacy of traffic data. Two types of sensors are considered, fixed sensors such as inductive loop detectors and connected vehicles which provide traffic density and speed data. The celebrated nonlinear second-order Aw-Rascle- Zhang (ARZ) model is utilized to model the traffic dynamics. The model is formulated as a nonlinear state-space difference equation. Sensitivity relations are derived for the given data which are then used to formulate a differentially private mechanism which adds a Gaussian noise to the data to make it differentially private. A Moving Horizon Estimation (MHE) approach is implemented for traffic state estimation using a linearized ARZ model. MHE is compared with Kalman Filter variants namely Extended Kalman Filter, Ensemble Kalman Filter and Unscented Kalman Filter. Several research and engineering questions are formulated and analysis is performed to find corresponding answers.