论文标题

Sierpinski垫圈图上的Abelian Sandpiles

Abelian sandpiles on Sierpinski gasket graphs

论文作者

Kaiser, Robin, Sava-Huss, Ecaterina, Wang, Yuwen

论文摘要

当前工作的目的是研究一类特殊类似图形的沙皮群的结构特性。更确切地说,我们考虑在Sierpinski垫片图上的Abelian Sandpiles,并且为了选择正常边界条件,我们给出了身份元素的表征和对砂体组的递归描述。最后,我们考虑上述图上的Abelian Sandpile Markov链,并提高了与平稳性融合速度的现有界限。

The aim of the current work is to investigate structural properties of the sandpile group of a special class of self-similar graphs. More precisely, we consider Abelian sandpiles on Sierpinski gasket graphs and for the choice of normal boundary conditions, we give a characterization of the identity element and a recursive description of the sandpile group. Finally, we consider Abelian sandpile Markov chains on the aforementioned graphs and we improve the existing bounds on the speed of convergence to stationarity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源