论文标题
Sierpinski垫圈图上的Abelian Sandpiles
Abelian sandpiles on Sierpinski gasket graphs
论文作者
论文摘要
当前工作的目的是研究一类特殊类似图形的沙皮群的结构特性。更确切地说,我们考虑在Sierpinski垫片图上的Abelian Sandpiles,并且为了选择正常边界条件,我们给出了身份元素的表征和对砂体组的递归描述。最后,我们考虑上述图上的Abelian Sandpile Markov链,并提高了与平稳性融合速度的现有界限。
The aim of the current work is to investigate structural properties of the sandpile group of a special class of self-similar graphs. More precisely, we consider Abelian sandpiles on Sierpinski gasket graphs and for the choice of normal boundary conditions, we give a characterization of the identity element and a recursive description of the sandpile group. Finally, we consider Abelian sandpile Markov chains on the aforementioned graphs and we improve the existing bounds on the speed of convergence to stationarity.