论文标题
无界塔和迈克尔线拓扑
Unbounded towers and the Michael line topology
论文作者
论文摘要
如果拓扑空间满足$ \ gnga $(也称为gerlits-nagy's属性$γ$),则如果每个有限空间的每个有限子集都包含在封面成员中,则包含该空间的点范围封面。如果在上述定义中,我们考虑可计数的封面,则拓扑空间满足$ \ ctblga $。我们证明,具有特殊组合结构的迈克尔线的子空间具有属性$ \ ctblga $。然后,我们将此结果应用于属性$ \ gnga $的一组REAL产品的产品。本文中使用的主要方法是连贯省略TSABAN发明的间隔。
A topological space satisfies $\GNga$ (also known as Gerlits--Nagy's property $γ$) if every open cover of the space such that each finite subset of the space is contained in a member of the cover, contains a point-cofinite cover of the space. A topological space satisfies $\ctblga$ if in the above definition we consider countable covers. We prove that subspaces of the Michael line with a special combinatorial structure have the property $\ctblga$. Then we apply this result to products of sets of reals with the property $\GNga$. The main method used in the paper is coherent omission of intervals invented by Tsaban.