论文标题
SparkESX:用于查找意外的单次Parkes数据集 - 数据挑战
SPARKESX: Single-dish PARKES data sets for finding the uneXpected -- A data challenge
论文作者
论文摘要
通常会偶尔发现新的天文对象。近期高级分辨率所产生的巨大数据量,无线电镜调查意味着发现需要有效的算法。通常对这种算法进行调整以检测特定的已知来源。因此,现有的数据集可能包含未知的天文来源,除非开发算法可以检测到更多种信号范围,否则该数据集将保持未被发现。我们提出了单次Parkes数据挑战,以查找意外(SparkESX),这是对真实和模拟的高级分辨率观察的汇编。 Sparkesx包括来自Parkes“ Murriyang”射电望远镜的三个模拟调查。每次调查都会生成广泛的模拟和注入预期信号(例如脉冲星,快速无线电爆发),特征性较差的信号(合理的耀斑标志)和每个调查的未知未知数。这一挑战的目的是帮助开发可以检测到广泛源类型的新算法。我们展示了基于标准Pulsar搜索软件Presto的典型管道如何成功地找到注射信号。该数据集可在https://doi.org/10.25919/fd4f-0g20上公开获得。
New classes of astronomical objects are often discovered serendipitously. The enormous data volumes produced by recent high-time resolution, radio-telescope surveys imply that efficient algorithms are required for a discovery. Such algorithms are usually tuned to detect specific, known sources. Existing data sets therefore likely contain unknown astronomical sources, which will remain undetected unless algorithms are developed that can detect a more diverse range of signals. We present the Single-dish PARKES data challenge for finding the uneXpected (SPARKESX), a compilation of real and simulated high-time resolution observations. SPARKESX comprises three mock surveys from the Parkes "Murriyang" radio telescope. A broad selection of simulated and injected expected signals (such as pulsars, fast radio bursts), poorly characterised signals (plausible flare star signatures) and unknown unknowns are generated for each survey. The goal of this challenge is to aid in the development of new algorithms that can detect a wide-range of source types. We show how successful a typical pipeline based on the standard pulsar search software, PRESTO, is at finding the injected signals. The dataset is publicly available at https://doi.org/10.25919/fd4f-0g20.