论文标题

Bifuse ++:360个深度估计的自我监督和高效的双预测融合

BiFuse++: Self-supervised and Efficient Bi-projection Fusion for 360 Depth Estimation

论文作者

Wang, Fu-En, Yeh, Yu-Hsuan, Tsai, Yi-Hsuan, Chiu, Wei-Chen, Sun, Min

论文摘要

由于球形摄像机的增加,单眼360深度估计成为许多应用(例如自主系统)的重要技术。因此,提出了针对单眼360深度估计的最新框架,例如Bifuse中的Bi-Procotion Fusion。要训​​练这样的框架,需要大量全景以及激光传感器捕获的相应深度地面真相,这大大增加了数据收集成本。此外,由于这样的数据收集过程是耗时的,因此将这些方法扩展到不同场景的可扩展性成为一个挑战。为此,从360个视频中进行单眼深度估算网络的自我培训是减轻此问题的一种方法。但是,没有现有的框架将Bi-Procotion Fusion纳入自我训练方案,这极大地限制了自我监督的性能,因为Bi-Prodoction Fusion可以利用来自不同投影类型的信息。在本文中,我们建议Bifuse ++探索双投射融合和自我训练场景的组合。具体来说,我们提出了一个新的融合模块和对比度感知的光度损失,以提高Bifuse的性能并提高对现实世界视频的自我训练的稳定性。我们在基准数据集上进行了监督和自我监督的实验,并实现最先进的性能。

Due to the rise of spherical cameras, monocular 360 depth estimation becomes an important technique for many applications (e.g., autonomous systems). Thus, state-of-the-art frameworks for monocular 360 depth estimation such as bi-projection fusion in BiFuse are proposed. To train such a framework, a large number of panoramas along with the corresponding depth ground truths captured by laser sensors are required, which highly increases the cost of data collection. Moreover, since such a data collection procedure is time-consuming, the scalability of extending these methods to different scenes becomes a challenge. To this end, self-training a network for monocular depth estimation from 360 videos is one way to alleviate this issue. However, there are no existing frameworks that incorporate bi-projection fusion into the self-training scheme, which highly limits the self-supervised performance since bi-projection fusion can leverage information from different projection types. In this paper, we propose BiFuse++ to explore the combination of bi-projection fusion and the self-training scenario. To be specific, we propose a new fusion module and Contrast-Aware Photometric Loss to improve the performance of BiFuse and increase the stability of self-training on real-world videos. We conduct both supervised and self-supervised experiments on benchmark datasets and achieve state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源