论文标题

带有深层插件的视频修复

Video Restoration with a Deep Plug-and-Play Prior

论文作者

Monod, Antoine, Delon, Julie, Tassano, Matias, Almansa, Andrés

论文摘要

本文提出了一种通过深层插件(PNP)方法恢复数字视频的新方法。在贝叶斯形式主义下,该方法包括在交替优化方案中使用深度卷积的降级网络代替先前的近端操作员。我们通过直接应用该方法来从降级视频观察中恢复数字视频,从而将自己与先前的PNP工作区分开来。这样,可以重新使用经过培训的用于降级的网络以进行其他视频修复任务。我们在视频脱张,超分辨率和随机缺失像素的插值方面的实验都显示出使用专门为视频denoising设计的网络具有明显的好处,因为它可以比具有相似的Denoise性能的单个图像网络获得更好的恢复性能和更好的时间稳定性。此外,我们的方法比较在序列的每个帧上分别应用不同的最新PNP方案。这在视频恢复领域打开了新的观点。

This paper presents a novel method for restoring digital videos via a Deep Plug-and-Play (PnP) approach. Under a Bayesian formalism, the method consists in using a deep convolutional denoising network in place of the proximal operator of the prior in an alternating optimization scheme. We distinguish ourselves from prior PnP work by directly applying that method to restore a digital video from a degraded video observation. This way, a network trained once for denoising can be repurposed for other video restoration tasks. Our experiments in video deblurring, super-resolution, and interpolation of random missing pixels all show a clear benefit to using a network specifically designed for video denoising, as it yields better restoration performance and better temporal stability than a single image network with similar denoising performance using the same PnP formulation. Moreover, our method compares favorably to applying a different state-of-the-art PnP scheme separately on each frame of the sequence. This opens new perspectives in the field of video restoration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源