论文标题

机器人臂的生物启发的光滑神经形态控制

Bioinspired Smooth Neuromorphic Control for Robotic Arms

论文作者

Polykretis, Ioannis, Supic, Lazar, Danielescu, Andreea

论文摘要

除了提供准确的运动之外,实现平稳运动轨迹是机器人控制理论的长期目标,旨在复制自然的人类运动。从生物制剂中汲取灵感,其到达控制网络毫不费力地产生了平稳而精确的运动,可以简化机器人臂的这些控制目标。模仿大脑的计算原理的神经形态处理器是近似生物控制器的准确性和平滑性的理想平台,同时最大程度地提高其能量效率和鲁棒性。但是,常规控制方法与神经形态硬件的不兼容限制了其现有适应性的计算效率和解释。相比之下,平滑而准确的运动的基础神经元子网有效,最小,并且与神经形态硬件固有兼容。在这项工作中,我们使用具有生物学上现实的尖峰神经网络模拟这些网络,以控制神经形态硬件。提出的控制器结合了实验识别的短期突触可塑性和专门的神经元,这些神经元调节感觉反馈增益,以在广泛的运动范围内提供平滑而准确的关节控制。同时,它保留了其生物学对应物的最小复杂性,并且可以直接部署在英特尔的神经形态处理器上。我们使用关节控制器作为构建块,并受到人臂中的联合协调的启发,我们扩大了这种控制现实世界机器人武器的方法。所产生的动作的轨迹和光滑的,钟形的速度谱类似于人类的动作,从而验证了控制器的生物学相关性。值得注意的是,该方法实现了最新的控制性能,同时将运动混蛋降低了19%,以提高运动平滑度。

Beyond providing accurate movements, achieving smooth motion trajectories is a long-standing goal of robotics control theory for arms aiming to replicate natural human movements. Drawing inspiration from biological agents, whose reaching control networks effortlessly give rise to smooth and precise movements, can simplify these control objectives for robot arms. Neuromorphic processors, which mimic the brain's computational principles, are an ideal platform to approximate the accuracy and smoothness of biological controllers while maximizing their energy efficiency and robustness. However, the incompatibility of conventional control methods with neuromorphic hardware limits the computational efficiency and explainability of their existing adaptations. In contrast, the neuronal subnetworks underlying smooth and accurate reaching movements are effective, minimal, and inherently compatible with neuromorphic hardware. In this work, we emulate these networks with a biologically realistic spiking neural network for motor control on neuromorphic hardware. The proposed controller incorporates experimentally-identified short-term synaptic plasticity and specialized neurons that regulate sensory feedback gain to provide smooth and accurate joint control across a wide motion range. Concurrently, it preserves the minimal complexity of its biological counterpart and is directly deployable on Intel's neuromorphic processor. Using the joint controller as a building block and inspired by joint coordination in human arms, we scaled up this approach to control real-world robot arms. The trajectories and smooth, bell-shaped velocity profiles of the resulting motions resembled those of humans, verifying the biological relevance of the controller. Notably, the method achieved state-of-the-art control performance while decreasing the motion jerk by 19% to improve motion smoothness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源