论文标题
$ 2+\boldsymbolε$扩展
Gross-Neveu-Heisenberg criticality from $2+\boldsymbolε$ expansion
论文作者
论文摘要
总的neveu-heisenberg通用类别描述了狄拉克半磁性绝缘体之间的连续量子相变。这种量子关键点最初是在$π$ -Flux和Honeycomb晶格上的Hubbard模型的背景下进行了讨论的,但是最近在Bernal堆叠的BiLayer模型中,与BiLayer Graphene的潜在相关性。在这里,我们演示了如何在$ε$扩展两者的较低关键时空维度围绕$ε$扩展中计算这种费米子普遍性类别的关键行为。这种方法与先前研究的四个上部临界维度的扩展相吻合。较低的临界维度附近的关键技术新颖性是在临界点存在不同的四边形相互作用通道,我们以Fierz完整的方式考虑了这一点。通过在临界维度和上部临界维度之间进行插值,我们获得了2+1个时空维度中临界指数的改进估计。对于与单层石墨烯相关的情况,我们发现了一个异常小的前导校正到缩放指数,这是由于不同的相互作用通道之间的竞争而产生的。这表明,将分析估计值与有限大小外推的数值数据进行比较时,可能需要考虑缩放的校正。
The Gross-Neveu-Heisenberg universality class describes a continuous quantum phase transition between a Dirac semimetal and an antiferromagnetic insulator. Such quantum critical points have originally been discussed in the context of Hubbard models on $π$-flux and honeycomb lattices, but more recently also in Bernal-stacked bilayer models, of potential relevance for bilayer graphene. Here, we demonstrate how the critical behavior of this fermionic universality class can be computed within an $ε$ expansion around the lower critical space-time dimension of two. This approach is complementary to the previously studied expansion around the upper critical dimension of four. The crucial technical novelty near the lower critical dimension is the presence of different four-fermion interaction channels at the critical point, which we take into account in a Fierz-complete way. By interpolating between the lower and upper critical dimensions, we obtain improved estimates for the critical exponents in 2+1 space-time dimensions. For the situation relevant to single-layer graphene, we find an unusually small leading-correction-to-scaling exponent, arising from the competition between different interaction channels. This suggests that corrections to scaling may need to be taken into account when comparing analytical estimates with numerical data from finite-size extrapolations.