论文标题
动摇,不吹:附近的Starburst矮星系的温和的重型反馈
Shaken, not blown: the gentle baryonic feedback of nearby starburst dwarf galaxies
论文作者
论文摘要
预计,通过产生与质量加载因子$β\!\ sim \!1 \! - \!50 $相关的星系尺度风,预计通过产生与质量加载因子相关的星系尺度风来调节低质量星系的恒星形成中起关键作用。我们使用了恒星质量的19个附近系统的样本进行了测试,$ 10^7 \!<\!<\!m_ \ star/{\ rm m} _ {\ odot} \!<\!<\!<\!<\!10^{10} $,大多数位于星形形成星座的主要序列上方。我们使用Muse@VLT光学整合场光谱法研究了这些星系的温暖电离气体运动学,通过其H $α$排放线的详细建模。离子气体的特征是不规则的速度场,表明存在银河盘中几十km/s的非圆运动,但固有的速度分散$ 40 $ -60 $ -60 $ $ km/s,这些分散仅比在层次的百叶窗中所测量的速度大。银河风在大于星系逃逸速度的速度下定义为气体,仅包括几个观察到的通量。质量流出速率和负载因子在很大程度上取决于$ M_ \ star $,恒星形成率(SFR),SFR表面密度和特定的SFR。对于$ m_ \ star $ of $ 10^8 $ m $ _ \ odot $,我们找到$β\ simeq0.02 $,它比星系进化理论模型所预测的值小两个以上的数量级。在我们的星系样品中,重型反馈刺激了温和的气周期,而不是引起大规模的爆炸。
Baryonic feedback is expected to play a key role in regulating the star formation of low-mass galaxies by producing galaxy-scale winds associated with mass-loading factors $β\!\sim\!1\!-\!50$. We have tested this prediction using a sample of 19 nearby systems with stellar masses $10^7\!<\!M_\star/{\rm M}_{\odot}\!<\!10^{10}$, mostly lying above the main sequence of star-forming galaxies. We used MUSE@VLT optical integral field spectroscopy to study the warm ionised gas kinematics of these galaxies via a detailed modelling of their H$α$ emission line. The ionised gas is characterised by irregular velocity fields, indicating the presence of non-circular motions of a few tens of km/s within galaxy discs, but with intrinsic velocity dispersion of $40$-$60$ km/s that are only marginally larger than those measured in main-sequence galaxies. Galactic winds, defined as gas at velocities larger than the galaxy escape speed, encompass only a few percent of the observed fluxes. Mass outflow rates and loading factors are strongly dependent on $M_\star$, star formation rate (SFR), SFR surface density and specific SFR. For $M_\star$ of $10^8$ M$_\odot$ we find $β\simeq0.02$, which is more than two orders of magnitude smaller than the values predicted by theoretical models of galaxy evolution. In our galaxy sample, baryonic feedback stimulates a gentle gas cycle rather than causing a large-scale blow out.