论文标题

随机幂律方程式全球概率强大的解决方案:存在和非唯一性

Global-in-time probabilistically strong solutions to stochastic power-law equations: existence and non-uniqueness

论文作者

Lü, Huaxiang, Zhu, Xiangchan

论文摘要

我们关心的是由尺寸$ d \ geq3 $的加性随机强迫驱动的幂律流体。对于功率索引$ r \ in(1,\ frac {3d+2} {d+2})$,我们在$ l^p_ {loc}中建立了无限的许多全球时间概率强,并且在分析上较弱的解决方案([[0,\ infty); l^2) c([0,\ infty); w^{1,\ max \ {1,r-1 \}}),p \ geq1 $对于$ l^2 \ 2 \ cap w^{1,\ max \ max \ {1,r-1,r-1,r-1 \}} $的每个散布初始条件的p \ geq1 $。该结果特别意味着法律上的非唯一性。如果$ r \ geq \ frac {3d+2} {d+2} $,则在三维情况下,我们的结果在三维情况下很敏锐。

We are concerned with the power-law fluids driven by an additive stochastic forcing in dimension $d\geq3$. For the power index $r\in(1,\frac{3d+2}{d+2})$, we establish existence of infinitely many global-in-time probabilistically strong and analytically weak solutions in $L^p_{loc}([0,\infty);L^2)\cap C([0,\infty);W^{1,\max\{1,r-1\}}),p\geq1$ for every divergence free initial condition in $L^2\cap W^{1,\max\{1,r-1\}}$. This result in particular implies non-uniqueness in law. Our result is sharp in the three dimensional case in the sense that the solution is unique if $r\geq \frac{3d+2}{d+2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源