论文标题
MMV_IM2IM:开源显微镜机器视觉工具箱,用于图像到图像转换
MMV_Im2Im: An Open Source Microscopy Machine Vision Toolbox for Image-to-Image Transformation
论文作者
论文摘要
在过去的十年中,计算机视觉的深度学习(DL)研究一直在迅速增长,基于DL的图像分析方法在生物医学问题方面取得了许多进步。在这项工作中,我们介绍了MMV_IM2IM,这是一种新的开源Python软件包,用于生物成像应用中的图像到图像转换。 MMV_IM2IM设计采用通用的图像到图像转换框架,可用于各种任务,包括语义细分,实例细分,图像恢复和图像生成等。我们的实现利用了最先进的机器学习工程技术,使研究人员可以专注于研究人员而无需担心工程详细信息。我们证明了MMV_IM2IM对十个以上不同的生物医学问题的有效性,从而展示了其一般潜力和应用。对于计算生物医学研究人员,MMV_IM2IM为开发新的生物医学图像分析或机器学习算法提供了一个起点,它们可以在此软件包中重复使用代码或叉子中的代码,并扩展此软件包以促进开发新方法。实验性生物医学研究人员可以通过多种例子和用例获得对图像到图像转化概念的全面看法,从这项工作中受益。我们希望这项工作可以为如何将基于DL的图像到图像转换融入分析过程中的社区灵感,从而实现只有传统实验测定才能完成的新生物医学研究。为了帮助研究人员开始,我们在https://github.com/mmv-lab/mmv_im2im提供了MMV_IM2IM的源代码,文档和教程,并提供了MIT许可。
Over the past decade, deep learning (DL) research in computer vision has been growing rapidly, with many advances in DL-based image analysis methods for biomedical problems. In this work, we introduce MMV_Im2Im, a new open-source python package for image-to-image transformation in bioimaging applications. MMV_Im2Im is designed with a generic image-to-image transformation framework that can be used for a wide range of tasks, including semantic segmentation, instance segmentation, image restoration, and image generation, etc.. Our implementation takes advantage of state-of-the-art machine learning engineering techniques, allowing researchers to focus on their research without worrying about engineering details. We demonstrate the effectiveness of MMV_Im2Im on more than ten different biomedical problems, showcasing its general potentials and applicabilities. For computational biomedical researchers, MMV_Im2Im provides a starting point for developing new biomedical image analysis or machine learning algorithms, where they can either reuse the code in this package or fork and extend this package to facilitate the development of new methods. Experimental biomedical researchers can benefit from this work by gaining a comprehensive view of the image-to-image transformation concept through diversified examples and use cases. We hope this work can give the community inspirations on how DL-based image-to-image transformation can be integrated into the assay development process, enabling new biomedical studies that cannot be done only with traditional experimental assays. To help researchers get started, we have provided source code, documentation, and tutorials for MMV_Im2Im at https://github.com/MMV-Lab/mmv_im2im under MIT license.