论文标题

自主机器人的自适应视觉伺服控制

Adaptive Visual Servo Control for Autonomous Robots

论文作者

Aghili, Farhad

论文摘要

本文着重于自适应和耐断层的视力引导的机器人系统,该系统可以选择最适合的控制动作,如果视觉系统在短期内发生部分或完全失败。此外,自主机器人系统会考虑物理和操作性约束,以最大程度地降低成本功能的方式执行特定的视觉伺服任务的需求。层次控制体系结构是基于迭代最接近点(ICP)图像登记的变体的交织整合,受约束的噪声自适应Kalman滤波器,故障检测逻辑和恢复以及受约束的最佳路径计划器的互动。动态估计器估计运动预测所需的未知状态和不确定的参数,同时对估计过程的一致性施加了一组不平等约束,并在面对意外的视力错误时适应了Kalman滤波器参数。随后是基于故障检测逻辑实施故障恢复策略,该逻辑使用图像注册的度量拟合误差来监视视觉反馈的健康。随后,估计/预测的姿势和参数将传递给最佳路径计划器,以使机器人最终效应器尽快将移动目标的抓地点带到移动目标的抓地点,这会受到多个约束,例如加速度限制,平滑捕获和目标的角度角度。

This paper focuses on an adaptive and fault-tolerant vision-guided robotic system that enables to choose the most appropriate control action if partial or complete failure of the vision system in the short term occurs. Moreover, the autonomous robotic system takes physical and operational constraints into account to perform the demands of a specific visual servoing task in a way to minimize a cost function. A hierarchical control architecture is developed based on interwoven integration of a variant of the iterative closest point (ICP) image registration, a constrained noise-adaptive Kalman filter, a fault detection logic and recovery, together with a constrained optimal path planner. The dynamic estimator estimates unknown states and uncertain parameters required for motion prediction while imposing a set of inequality constraints for consistency of the estimation process and adjusting adaptively the Kalman filter parameters in the face of unexpected vision errors. It is followed by the implementation of a fault recovery strategy based on a fault detection logic that monitors the health of the visual feedback using the metric fit error of the image registration. Subsequently, the estimated/predicted pose and parameters are passed to an optimal path planner in order to bring the robot end-effector to the grasping point of a moving target as quickly as possible subject to multiple constraints such as acceleration limit, smooth capture, and line-of-sight angle of the target.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源