论文标题
JT重力与物质,广义ETH和随机矩阵
JT gravity with matter, generalized ETH, and Random Matrices
论文作者
论文摘要
我们提供了证据表明,千斤顶teitelboim重力在最小耦合到自由大规模标量场和单轨2矩阵模型之间具有偶性。一个矩阵是全息疾病平均量子力学的汉密尔顿$ h $,而另一个矩阵是光算子$ \ cal o $ $ $ dual,to bulk scalar域。感兴趣的单边界可观察到的是$ \ cal o $的热相关函数。我们研究了矩阵模型中零元和两符号期望值与磁盘和圆柱欧几里德路径积分的匹配。 $ \ cal o $的矩阵元素的非高斯统计数据对应于eth ansatz的概括。 我们描述了构建双尺度矩阵模型的多种方法,以重现引力磁盘相关器。一种方法涉及强加$ h $和$ \ cal o $遵守操作员方程,以限制两个矩阵。另外,我们设计了一个模型,该模型重现了某些双尺度的SYK相关器,该模型可能会再次缩放以获得磁盘相关器。 我们表明,在任何单轨道,两矩阵模型中,零属的两边性期望值,每个边界上的最多$ \ cal o $插入都可以直接从所有零属的一边相关器中直接计算。应用于感兴趣的模型,我们发现这些圆柱体可观测物取决于双尺度极限的细节。在我们检查的范围内,可以从矩阵模型`t Hooft图的系统分类中复制引力双重trumpet,紫外线分歧。紫外线差异表明矩阵积分的鞍座在扰动上是不稳定的。这项工作中讨论的矩阵模型的非扰动处理将供将来的研究。
We present evidence for a duality between Jackiw-Teitelboim gravity minimally coupled to a free massive scalar field and a single-trace two-matrix model. One matrix is the Hamiltonian $H$ of a holographic disorder-averaged quantum mechanics, while the other matrix is the light operator $\cal O$ dual to the bulk scalar field. The single-boundary observables of interest are thermal correlation functions of $\cal O$. We study the matching of the genus zero one- and two-boundary expectation values in the matrix model to the disk and cylinder Euclidean path integrals. The non-Gaussian statistics of the matrix elements of $\cal O$ correspond to a generalization of the ETH ansatz. We describe multiple ways to construct double-scaled matrix models that reproduce the gravitational disk correlators. One method involves imposing an operator equation obeyed by $H$ and $\cal O$ as a constraint on the two matrices. Separately, we design a model that reproduces certain double-scaled SYK correlators that may be scaled once more to obtain the disk correlators. We show that in any single-trace, two-matrix model, the genus zero two-boundary expectation value, with up to one $\cal O$ insertion on each boundary, can be computed directly from all of the genus zero one-boundary correlators. Applied to the models of interest, we find that these cylinder observables depend on the details of the double-scaling limit. To the extent we have checked, it is possible to reproduce the gravitational double-trumpet, which is UV divergent, from a systematic classification of matrix model `t Hooft diagrams. The UV divergence indicates that the matrix integral saddle of interest is perturbatively unstable. A non-perturbative treatment of the matrix models discussed in this work is left for future investigations.