论文标题

准本地应力调整形式主义和卡西米尔效应

Quasi-local stress-tensor formalism and the Casimir effect

论文作者

Nazari, Borzoo

论文摘要

我们将准局部应力 - 能量张量形式主义应用于位于静态空间中的导电平面之间的标量场的casimir效应。我们表明,对于Neumann和Dirichlet边界条件,表面能量都消失了,因此体积Casimir能量还原为量子场的著名零点能量,即$ e^{vol。} = \ sum \ sum \ frac {\ hbarω} {2} {2} $。这使我们能够在文献中加强先前的结果,并将计算扩展到大规模和任意耦合的标量场的情况。我们发现,与先前声明它消失的主张相反,对Casimir能量的一阶扰动校正存在。这显示了许多数量级大于先前对能量校正的估计,并通过不久的将来的实验可检测到它。

We apply the quasi-local stress-energy tensor formalism to the Casimir effect of a scalar field confined between conducting planes located in a static spacetime. We show that the surface energy vanishes for both Neumann and Dirichlet boundary conditions and consequently the volume Casimir energy reduces to the famous zero point energy of the quantum field, i.e. $E^{vol.}=\sum\frac{\hbar ω}{2}$. This enables us to reinforce previous results in the literature and extend the calculations to the case of massive and arbitrarily coupled scalar field. We found that there exists a first order perturbation correction to the Casimir energy contrary to previous claims which state that it vanishes. This shows many orders of magnitude greater than previous estimations for the energy corrections and makes it detectable by near future experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源