论文标题

存在略微批评纯净的诺伊曼问题的解决方案

Existence of solutions to a slightly supercritical pure Neumann problem

论文作者

Pistoia, Angela, Saldaña, Alberto, Tavares, Hugo

论文摘要

我们显示了将固定溶液集中到纯净的neumann略微临界问题的存在和多样性。这是超临界制度中这种问题的第一个存在结果。由于解决方案必须满足零平均值的兼容性条件,因此所有解决方案都必须更改符号。我们的证明是基于Lyapunov-Schmidt还原参数,该参数结合了使用合适的对称性的零平均条件。我们的方法还保证了对Annuli中亚批判性诺伊曼问题的存在和多样性。还讨论了更通用的对称域(例如椭圆形)。

We show the existence and multiplicity of concentrating solutions to a pure Neumann slightly supercritical problem in a ball. This is the first existence result for this kind of problems in the supercritical regime. Since the solutions must satisfy a compatibility condition of zero average, all of them have to change sign. Our proofs are based on a Lyapunov-Schmidt reduction argument which incorporates the zero-average condition using suitable symmetries. Our approach also guarantees the existence and multiplicity of solutions to subcritical Neumann problems in annuli. More general symmetric domains (e.g. ellipsoids) are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源