论文标题

LaGeoMetríaDeLos Monooides

La geometría de los Monoides

论文作者

Perez-Buendia, J. Rogelio, Reyes-Ramirez, Ernesto Antonio

论文摘要

在本文中,我们从分类的角度介绍了单体理论的基础,强调模块理论在交换环上的类比和差异。我们提出了AFINE方案和AFINE单体方案的概括。我们研究了前两个与OPIC品种之间的关系,并为研究Fontaine-Kato-Illusie的对数几何形状的研究建立了基础,该几何形状广泛用于算术几何形状。 en esteartículorestranamos las bases de lateoríade lateoríadedesde el punto de vista aCTAGURICO,HACIENDOETOénfasisen las laasandalogíasy diferencias y diferencias en entre lateoríadeoríadeoríadeoríadeMódulossobre anillos conmutativos。 Se Presenta la lageneralizaciónde esquemaafína esquemaafínmonoidal; estudiamos larelaciónqueéstostienen con las and toriCAS y sentamos las bases base para el estudio de lageoMetríaOaleagarítmicade fontaine-kataine-kato-illusie〜 \ cite {kato1989lithmic}

In this article we present the basis of Monoid Theory from a categorical point of view, emphasizing the analogies and differences between the theory of modules over commutative rings. We present the generalization of afine schemes and afine monoidal schemes. We study the relationship between the former two with opic varieties and we set up the basis for the study of Fontaine-Kato-Illusie's Logaritmic Geometry, widely used in Arithmetic Geometry. En este artículo presentamos las bases de la teoría de monoides desde el punto de vista categórico, haciendo énfasis en las analogías y diferencias entre la teoría de módulos sobre anillos conmutativos. Se presenta la generalización de esquema afín a esquema afín monoidal; estudiamos la relación que éstos tienen con las variedades tóricas y sentamos las bases para el estudio de la Geometría Logarítmica de Fontaine-Kato-Illusie~\cite{kato1989logarithmic}, ampliamente usada en Geometría Aritmética.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源