论文标题
Healthyth:从未注释的医学图像中学习以检测与人类疾病相关的异常
HealthyGAN: Learning from Unannotated Medical Images to Detect Anomalies Associated with Human Disease
论文作者
论文摘要
从MRI和X射线等医学图像中自动检测的自动异常可以大大减少人类在疾病诊断方面的努力。由于建模异常的复杂性以及领域专家(例如放射科医生)的高度手动注释成本,因此当前医学成像文献中的典型技术仅着重于从健康受试者中衍生出诊断模型,假设该模型可以从患者中检测到图像作为异常。但是,在许多现实情况下,与健康和患病患者混合在一起的未注释的数据集很丰富。因此,本文提出了一个研究问题,即如何通过(1)(1)(1)(2)(2)文献中使用的一组健康图像来改善无监督的异常检测。为了回答这个问题,我们提出了一种新型的单向图像到图像翻译方法的Healthygan,该方法学会了将图像从混合数据集中转换为仅健康图像。作为一方面的Healthygan,Healthygan放宽了现有未配对的图像到图像翻译方法的循环一致性的要求,这对于混合的未经注释的数据是无法实现的。一旦学习了翻译,我们通过减去其翻译输出来为任何给定图像生成一个差异图。差异图中显着响应的区域对应于潜在异常(如果有)。我们的Healthygan在两个公开可用的数据集上优于传统的最先进方法:Covid-19和NIH Chestx-Ray14,以及从Mayo Clinic收集的一个机构数据集。该实施可在https://github.com/mahfuzmohammad/healthygan上公开获得。
Automated anomaly detection from medical images, such as MRIs and X-rays, can significantly reduce human effort in disease diagnosis. Owing to the complexity of modeling anomalies and the high cost of manual annotation by domain experts (e.g., radiologists), a typical technique in the current medical imaging literature has focused on deriving diagnostic models from healthy subjects only, assuming the model will detect the images from patients as outliers. However, in many real-world scenarios, unannotated datasets with a mix of both healthy and diseased individuals are abundant. Therefore, this paper poses the research question of how to improve unsupervised anomaly detection by utilizing (1) an unannotated set of mixed images, in addition to (2) the set of healthy images as being used in the literature. To answer the question, we propose HealthyGAN, a novel one-directional image-to-image translation method, which learns to translate the images from the mixed dataset to only healthy images. Being one-directional, HealthyGAN relaxes the requirement of cycle consistency of existing unpaired image-to-image translation methods, which is unattainable with mixed unannotated data. Once the translation is learned, we generate a difference map for any given image by subtracting its translated output. Regions of significant responses in the difference map correspond to potential anomalies (if any). Our HealthyGAN outperforms the conventional state-of-the-art methods by significant margins on two publicly available datasets: COVID-19 and NIH ChestX-ray14, and one institutional dataset collected from Mayo Clinic. The implementation is publicly available at https://github.com/mahfuzmohammad/HealthyGAN.