论文标题

惠特尼的部分道林格尔特。

Whitney Numbers of Partial Dowling Lattices

论文作者

Zaslavsky, Thomas

论文摘要

Dowling晶格$ q_n(\ Mathfrak {g})$,$ \ Mathfrak {g} $有限组,概括了所有向量在一个字段上生成的几何晶格,其中最多有两个非零组件。抽象地,它是有限矩形分类的基本对象。从建设性上讲,它是某个增益图的帧矩阵,称为$ \ mathfrak {g} {\ cdot} k_n^{(v)} $。其第一类的惠特尼人数进入了几个重要的公式。 Ravagnani建议并部分证明了这些数字的$ q_n(\ Mathfrak {g})$,更高的概括是$ | \ Mathfrak {g} | $的多项式函数。我们给出了$ q_n(\ mathfrak {g})$的简单证明及其对更广泛的增益图和偏置图的概括,我们确定多项式的程度和系数。

The Dowling lattice $Q_n(\mathfrak{G})$, $\mathfrak{G}$ a finite group, generalizes the geometric lattice generated by all vectors, over a field, with at most two nonzero components. Abstractly, it is a fundamental object in the classification of finite matroids. Constructively, it is the frame matroid of a certain gain graph known as $\mathfrak{G}{\cdot}K_n^{(V)}$. Its Whitney numbers of the first kind enter into several important formulas. Ravagnani suggested and partially proved that these numbers of $Q_n(\mathfrak{G})$ and higher-weight generalizations are polynomial functions of $|\mathfrak{G}|$. We give a simple proof for $Q_n(\mathfrak{G})$ and its generalization to a wider class of gain graphs and biased graphs, and we determine the degrees and coefficients of the polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源