论文标题

与异性结构的小面积估计的共轭建模方法

Conjugate Modeling Approaches for Small Area Estimation with Heteroscedastic Structure

论文作者

Parker, Paul A., Holan, Scott H., Janicki, Ryan

论文摘要

小面积估计已成为官方统计数据中的重要工具,用于构建样本量较小的域的人口量估计值。典型的区域级别模型是一种异方差回归,其中每个域的差异已知并插入以下基于设计的估计值中。最近的工作考虑了该方差的层次模型,其中基于设计的估计值用作对每个域中潜在真实方差进行建模的附加数据点。这些分层模型可能包含协变量信息,但在高维设置中可能很难采样。利用最近的分布理论,我们探索了一类贝叶斯分层模型,以进行小面积估计,以平滑基于设计的平均值和方差。此外,我们开发了一类用于异质的高斯响应数据的单位级模型。重要的是,我们同时保留了允许有效抽样的共轭模型结构,同时保留了共轭模型结构。我们通过经验模拟研究以及使用美国社区调查的数据来说明我们的方法论。

Small area estimation has become an important tool in official statistics, used to construct estimates of population quantities for domains with small sample sizes. Typical area-level models function as a type of heteroscedastic regression, where the variance for each domain is assumed to be known and plugged in following a design-based estimate. Recent work has considered hierarchical models for the variance, where the design-based estimates are used as an additional data point to model the latent true variance in each domain. These hierarchical models may incorporate covariate information, but can be difficult to sample from in high-dimensional settings. Utilizing recent distribution theory, we explore a class of Bayesian hierarchical models for small area estimation that smooth both the design-based estimate of the mean and the variance. In addition, we develop a class of unit-level models for heteroscedastic Gaussian response data. Importantly, we incorporate both covariate information as well as spatial dependence, while retaining a conjugate model structure that allows for efficient sampling. We illustrate our methodology through an empirical simulation study as well as an application using data from the American Community Survey.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源