论文标题
某些$ t $ regular分区的算术属性
Arithmetic properties of certain $t$-regular partitions
论文作者
论文摘要
对于正整数$ t \ geq 2 $,令$ b_ {t}(n)$表示非负整数$ n $的$ t $ regular-regular分区数。由Keith和Zanello最近的一些猜想的动机,我们建立了无限的一致家庭Modulo $ 2 $,$ b_9(n)$和$ b_ {19}(n)$。我们证明了Keith和Zanello的两种猜想的一些特定案例,其自相似性为$ B_9(n)$和$ b_ {19}(n)$ modulo $ 2 $。我们还将$ b_ {t}(n)$与普通分区函数联系起来,并证明$ b_ {t}(n)$满足了Ramanujan著名的一致性,因为一些无限的家庭$ t $。对于$ t \ in \ {6,10,14,15,18,22,22,22,26,27,28 \} $,Keith和Zanello认为没有整数$ a> 0 $ a> $ a> $ a> $ a> $ a> $ b \ geq 0 $ for when $ b_t(an+ b_t(an+ b)\ equiv 0 \ equiv 0 \ equiv 0 \ equiv for geq 0 $ n $ n $ n \ n $ n \ yn \ y y \ n \ y \ n \ n y \ n \ n \ n \ n y \ n y \ n $ n \。我们证明,对于任何$ t \ geq 2 $和prime $ \ ell $,都有无限的许多算术进度$ an+b $,$ \ sum_ {n = 0}^{\ infty} b_t(an+b)接下来,我们获得$ b_ {6}(n),b_ {10}(n)$和$ b_ {14}(n)$ modulo 2的分布的定量估计。
For a positive integer $t\geq 2$, let $b_{t}(n)$ denote the number of $t$-regular partitions of a nonnegative integer $n$. Motivated by some recent conjectures of Keith and Zanello, we establish infinite families of congruences modulo $2$ for $b_9(n)$ and $b_{19}(n)$. We prove some specific cases of two conjectures of Keith and Zanello on self-similarities of $b_9(n)$ and $b_{19}(n)$ modulo $2$. We also relate $b_{t}(n)$ to the ordinary partition function, and prove that $b_{t}(n)$ satisfies the Ramanujan's famous congruences for some infinite families of $t$. For $t\in \{6,10,14,15,18,20,22,26,27,28\}$, Keith and Zanello conjectured that there are no integers $A>0$ and $B\geq 0$ for which $b_t(An+ B)\equiv 0\pmod 2$ for all $n\geq 0$. We prove that, for any $t\geq 2$ and prime $\ell$, there are infinitely many arithmetic progressions $An+B$ for which $\sum_{n=0}^{\infty}b_t(An+B)q^n\not\equiv0 \pmod{\ell}$. Next, we obtain quantitative estimates for the distributions of $b_{6}(n), b_{10}(n)$ and $b_{14}(n)$ modulo 2. We further study the odd densities of certain infinite families of eta-quotients related to the 7-regular and $13$-regular partition functions.