论文标题

DEUDORID:基于UTG相似性检测地下经济应用程序

DeUEDroid: Detecting Underground Economy Apps Based on UTG Similarity

论文作者

Chen, Zhuo, Liu, Jie, Hu, Yubo, Wu, Lei, Zhou, Yajin, He, Yiling, Liao, Xianhao, Wang, Ke, Li, Jinku, Qin, Zhan

论文摘要

近年来,地下经济在移动系统中正在激增。这些地下经济应用程序(UEWARE)通过提供不合规的服务而获得利润,尤其是在诸如赌博,色情和贷款等敏感领域。与传统恶意软件不同,其中大多数(超过80%)没有恶意有效载荷。由于其独特的特征,现有的检测方法无法有效,有效地减轻这种新兴威胁。 为了解决这个问题,我们提出了一种新颖的方法,通过考虑其UI过渡图(UTG)来有效,有效地检测到Ueware。基于提出的方法,我们设计并实施了一个名为Deuedroid的系统来执行检测。为了评估Deuedroid,我们收集了25,717个应用程序,并构建了Ueware的第一个大型基地数据集(1,700个应用程序)。基于地面数据集的评估结果表明,Deuedroid可以涵盖新的UI功能并静态构建精确的UTG。它达到98.22%的检测F1得分和98.97%的分类精度,明显优于传统方法。涉及24,017个应用程序的评估证明了在现实情况下Ueware检测的有效性和效率。此外,结果表明,Ueware很普遍,其中54%的应用程序在野外,而App Store中的11%的应用程序为Ueware。我们的工作阐明了未来在分析和检测Ueware方面的工作。

In recent years, the underground economy is proliferating in the mobile system. These underground economy apps (UEware) make profits from providing non-compliant services, especially in sensitive areas such as gambling, pornography, and loans. Unlike traditional malware, most of them (over 80%) do not have malicious payloads. Due to their unique characteristics, existing detection approaches cannot effectively and efficiently mitigate this emerging threat. To address this problem, we propose a novel approach to effectively and efficiently detect UEware by considering their UI transition graphs (UTGs). Based on the proposed approach, we design and implement a system named DeUEDroid to perform the detection. To evaluate DeUEDroid, we collect 25,717 apps and build the first large-scale ground-truth dataset (1,700 apps) of UEware. The evaluation result based on the ground-truth dataset shows that DeUEDroid can cover new UI features and statically construct precise UTG. It achieves 98.22% detection F1-score and 98.97% classification accuracy, significantly outperforming traditional approaches. The evaluation involving 24,017 apps demonstrates the effectiveness and efficiency of UEware detection in real-world scenarios. Furthermore, the result reveals that UEware are prevalent, with 54% of apps in the wild and 11% of apps in app stores being UEware. Our work sheds light on future work in analyzing and detecting UEware.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源