论文标题
DEUDORID:基于UTG相似性检测地下经济应用程序
DeUEDroid: Detecting Underground Economy Apps Based on UTG Similarity
论文作者
论文摘要
近年来,地下经济在移动系统中正在激增。这些地下经济应用程序(UEWARE)通过提供不合规的服务而获得利润,尤其是在诸如赌博,色情和贷款等敏感领域。与传统恶意软件不同,其中大多数(超过80%)没有恶意有效载荷。由于其独特的特征,现有的检测方法无法有效,有效地减轻这种新兴威胁。 为了解决这个问题,我们提出了一种新颖的方法,通过考虑其UI过渡图(UTG)来有效,有效地检测到Ueware。基于提出的方法,我们设计并实施了一个名为Deuedroid的系统来执行检测。为了评估Deuedroid,我们收集了25,717个应用程序,并构建了Ueware的第一个大型基地数据集(1,700个应用程序)。基于地面数据集的评估结果表明,Deuedroid可以涵盖新的UI功能并静态构建精确的UTG。它达到98.22%的检测F1得分和98.97%的分类精度,明显优于传统方法。涉及24,017个应用程序的评估证明了在现实情况下Ueware检测的有效性和效率。此外,结果表明,Ueware很普遍,其中54%的应用程序在野外,而App Store中的11%的应用程序为Ueware。我们的工作阐明了未来在分析和检测Ueware方面的工作。
In recent years, the underground economy is proliferating in the mobile system. These underground economy apps (UEware) make profits from providing non-compliant services, especially in sensitive areas such as gambling, pornography, and loans. Unlike traditional malware, most of them (over 80%) do not have malicious payloads. Due to their unique characteristics, existing detection approaches cannot effectively and efficiently mitigate this emerging threat. To address this problem, we propose a novel approach to effectively and efficiently detect UEware by considering their UI transition graphs (UTGs). Based on the proposed approach, we design and implement a system named DeUEDroid to perform the detection. To evaluate DeUEDroid, we collect 25,717 apps and build the first large-scale ground-truth dataset (1,700 apps) of UEware. The evaluation result based on the ground-truth dataset shows that DeUEDroid can cover new UI features and statically construct precise UTG. It achieves 98.22% detection F1-score and 98.97% classification accuracy, significantly outperforming traditional approaches. The evaluation involving 24,017 apps demonstrates the effectiveness and efficiency of UEware detection in real-world scenarios. Furthermore, the result reveals that UEware are prevalent, with 54% of apps in the wild and 11% of apps in app stores being UEware. Our work sheds light on future work in analyzing and detecting UEware.