论文标题

在静态歧管上,满足边界上过度确定的罗宾类型条件

On static manifolds satisfying an overdetermined Robin type condition on the boundary

论文作者

Cruz, Tiarlos, Nunes, Ivaldo

论文摘要

在这项工作中,我们考虑了静态歧管$ m $,带有非空边界$ \ partial m $。在这种情况下,我们假设潜在的$ V $还满足了$ \ partial m $的过度确定的罗宾类型条件。我们证明了欧几里得封闭的单位球$ b^3 $ in $ \ mathbb {r}^3 $的刚性定理。更确切地说,当连接$σ$并相交$ \ partial m $时,我们为零集$σ= v^{ - 1}(0)$提供了一个清晰的上限。我们还考虑了$σ= v^{ - 1}(0)$不相交$ \ partial m $的情况。

In this work, we consider static manifolds $M$ with nonempty boundary $\partial M$. In this case, we suppose that the potential $V$ also satisfies an overdetermined Robin type condition on $\partial M$. We prove a rigidity theorem for the Euclidean closed unit ball $B^3$ in $\mathbb{R}^3$. More precisely, we give a sharp upper bound for the area of the zero set $Σ=V^{-1}(0)$ of the potential $V$, when $Σ$ is connected and intersects $\partial M$. We also consider the case where $Σ=V^{-1}(0)$ does not intersect $\partial M$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源