论文标题

Autopet挑战:将NN-UNET与Swin Unet结合到最大强度投影分类器的增强

AutoPET Challenge: Combining nn-Unet with Swin UNETR Augmented by Maximum Intensity Projection Classifier

论文作者

Heiliger, Lars, Marinov, Zdravko, Hasin, Max, Ferreira, André, Fragemann, Jana, Pomykala, Kelsey, Murray, Jacob, Kersting, David, Alves, Victor, Stiefelhagen, Rainer, Egger, Jan, Kleesiek, Jens

论文摘要

随着时间的流逝,肿瘤体积和肿瘤特征的变化是癌症治疗的重要生物标志物。在这种情况下,FDG-PET/CT扫描通常用于癌症的分期和重新分期,因为放射性标记的荧光脱氧葡萄糖在高代谢的地区进行了。不幸的是,这些具有高代谢的区域不是针对肿瘤的特异性,也可以代表正常功能器官,炎症或感染的生理吸收,在这些扫描中使详细且可靠的肿瘤分割成为一项苛刻的任务。 Autopet挑战赛解决了这一研究差距,该挑战提供了来自900名患者的FDG-PET/CT扫描的公共数据集,以鼓励该领域的进一步改善。我们对这一挑战的贡献是由两个最先进的分割模型组成的合奏,即NN-UNET和SWIN UNETR,并以最大强度投影分类器的形式增强,该分类器的作用像是门控机制。如果它预测了病变的存在,则两种分割都是通过晚期融合方法组合的。我们的解决方案在我们的交叉验证中诊断出患有肺癌,黑色素瘤和淋巴瘤的患者的骰子得分为72.12 \%。代码:https://github.com/heiligerl/autopet_submission

Tumor volume and changes in tumor characteristics over time are important biomarkers for cancer therapy. In this context, FDG-PET/CT scans are routinely used for staging and re-staging of cancer, as the radiolabeled fluorodeoxyglucose is taken up in regions of high metabolism. Unfortunately, these regions with high metabolism are not specific to tumors and can also represent physiological uptake by normal functioning organs, inflammation, or infection, making detailed and reliable tumor segmentation in these scans a demanding task. This gap in research is addressed by the AutoPET challenge, which provides a public data set with FDG-PET/CT scans from 900 patients to encourage further improvement in this field. Our contribution to this challenge is an ensemble of two state-of-the-art segmentation models, the nn-Unet and the Swin UNETR, augmented by a maximum intensity projection classifier that acts like a gating mechanism. If it predicts the existence of lesions, both segmentations are combined by a late fusion approach. Our solution achieves a Dice score of 72.12\% on patients diagnosed with lung cancer, melanoma, and lymphoma in our cross-validation. Code: https://github.com/heiligerl/autopet_submission

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源