论文标题
具有量化和自适应深神经网络的微控制器的人类活动识别
Human Activity Recognition on Microcontrollers with Quantized and Adaptive Deep Neural Networks
论文作者
论文摘要
基于惯性数据的人类活动识别(HAR)是从智能手机到超低功率传感器的嵌入式设备上越来越扩散的任务。由于深度学习模型的计算复杂性很高,因此大多数嵌入式HAR系统基于简单且不那么精确的经典机器学习算法。这项工作弥合了在设备上的har和深度学习之间的差距,提出了一组有效的一维卷积神经网络(CNN),可在通用微控制器(MCUS)上部署。我们的CNN是获得了将超参数优化与子字节和混合精确量化的结合,以在分类结果和记忆职业之间找到良好的权衡。此外,我们还利用自适应推断作为正交优化,以基于处理后的输入来调整运行时的推理复杂性,从而产生更灵活的HAR系统。通过在四个数据集上进行实验,并针对超低功率RISC-V MCU,我们表明(i)我们能够为HAR获得一组丰富的帕累托(Pareto)最佳的CNN,在记忆,延迟和能量消耗方面涵盖了1个以上的数量级; (ii)借助自适应推断,我们可以从单个CNN开始得出> 20个运行时操作模式,分类得分的不同程度高达10%,推理复杂性的差异超过3倍,并且内存开销有限; (iii)在四个基准中的三个基准中,我们的表现都超过了所有以前的深度学习方法,使记忆占用占领超过100倍。获得更好性能(浅层和深度)的几种方法与MCU部署不兼容。 (iv)我们所有的CNN都与推理延迟<16ms的实时处式HAR兼容。他们的记忆职业在0.05-23.17 kb中有所不同,其能源消耗为0.005和61.59 UJ,可以在少量电池供应上进行多年的连续操作。
Human Activity Recognition (HAR) based on inertial data is an increasingly diffused task on embedded devices, from smartphones to ultra low-power sensors. Due to the high computational complexity of deep learning models, most embedded HAR systems are based on simple and not-so-accurate classic machine learning algorithms. This work bridges the gap between on-device HAR and deep learning, proposing a set of efficient one-dimensional Convolutional Neural Networks (CNNs) deployable on general purpose microcontrollers (MCUs). Our CNNs are obtained combining hyper-parameters optimization with sub-byte and mixed-precision quantization, to find good trade-offs between classification results and memory occupation. Moreover, we also leverage adaptive inference as an orthogonal optimization to tune the inference complexity at runtime based on the processed input, hence producing a more flexible HAR system. With experiments on four datasets, and targeting an ultra-low-power RISC-V MCU, we show that (i) We are able to obtain a rich set of Pareto-optimal CNNs for HAR, spanning more than 1 order of magnitude in terms of memory, latency and energy consumption; (ii) Thanks to adaptive inference, we can derive >20 runtime operating modes starting from a single CNN, differing by up to 10% in classification scores and by more than 3x in inference complexity, with a limited memory overhead; (iii) on three of the four benchmarks, we outperform all previous deep learning methods, reducing the memory occupation by more than 100x. The few methods that obtain better performance (both shallow and deep) are not compatible with MCU deployment. (iv) All our CNNs are compatible with real-time on-device HAR with an inference latency <16ms. Their memory occupation varies in 0.05-23.17 kB, and their energy consumption in 0.005 and 61.59 uJ, allowing years of continuous operation on a small battery supply.