论文标题
用仪表卫星图像启用国家规模的土地覆盖地图
Enabling Country-Scale Land Cover Mapping with Meter-Resolution Satellite Imagery
论文作者
论文摘要
高分辨率卫星图像可以为土地覆盖分类提供丰富的详细空间信息,这对于研究复杂的建筑环境尤为重要。但是,由于覆盖范围的复杂模式,昂贵的训练样品集以及卫星图像的严重分布变化,很少有研究应用高分辨率图像来大规模详细类别的地覆盖映射。为了填补这一空白,我们提出了一个大规模的土地盖数据集,五亿像素。它包含超过50亿个标记的像素,这些像素由150个高分辨率Gaofen-2(4 M)卫星图像,在涵盖人工结构,农业和自然类别的24类系统中注释。此外,我们提出了一种基于深度学习的无监督域适应方法,该方法可以将在标记的数据集(称为源域)训练的分类模型转移到大型土地覆盖映射的无标记数据(称为目标域)中。具体来说,我们采用动态伪标签分配和班级平衡策略来介绍一个端到端的暹罗网络,以执行自适应领域联合学习。为了验证我们的数据集的普遍性以及在不同的传感器和不同地理区域中提出的方法,我们对中国的五个大城市和其他五个亚洲国家 /地区的六个城市进行了土地覆盖地图,使用:PlanetsCope(3 m),Gaofen-1(8 m)和Sentinel-2(10 m)卫星图像。在总研究区域为60,000平方公里,实验显示出令人鼓舞的结果,即使输入图像完全未标记。拟议的方法接受了5亿像素数据集的培训,可实现在整个中国和其他亚洲国家的高质量和详细的土地覆盖地图。
High-resolution satellite images can provide abundant, detailed spatial information for land cover classification, which is particularly important for studying the complicated built environment. However, due to the complex land cover patterns, the costly training sample collections, and the severe distribution shifts of satellite imageries, few studies have applied high-resolution images to land cover mapping in detailed categories at large scale. To fill this gap, we present a large-scale land cover dataset, Five-Billion-Pixels. It contains more than 5 billion labeled pixels of 150 high-resolution Gaofen-2 (4 m) satellite images, annotated in a 24-category system covering artificial-constructed, agricultural, and natural classes. In addition, we propose a deep-learning-based unsupervised domain adaptation approach that can transfer classification models trained on labeled dataset (referred to as the source domain) to unlabeled data (referred to as the target domain) for large-scale land cover mapping. Specifically, we introduce an end-to-end Siamese network employing dynamic pseudo-label assignment and class balancing strategy to perform adaptive domain joint learning. To validate the generalizability of our dataset and the proposed approach across different sensors and different geographical regions, we carry out land cover mapping on five megacities in China and six cities in other five Asian countries severally using: PlanetScope (3 m), Gaofen-1 (8 m), and Sentinel-2 (10 m) satellite images. Over a total study area of 60,000 square kilometers, the experiments show promising results even though the input images are entirely unlabeled. The proposed approach, trained with the Five-Billion-Pixels dataset, enables high-quality and detailed land cover mapping across the whole country of China and some other Asian countries at meter-resolution.