论文标题
分布式漂移适应性,用于多变量时间序列的时间条件变异自动编码器预测
Distributional Drift Adaptation with Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting
论文作者
论文摘要
由于非平稳性,实际多元时间序列(MTS)的分布会随着时间而变化,这被称为分布漂移。大多数现有的MT预测模型都会极大地遭受分销漂移并随着时间的推移而降低预测性能。现有方法通过适应最新到达的数据或根据未来数据得出的元知识进行自我纠正来解决分布漂移。尽管在MT的预测中取得了巨大的成功,但这些方法几乎无法捕获内在的分布变化,尤其是从分布的角度来看。因此,我们提出了一个新型的框架时间条件变化自动编码器(TCVAE),以模拟MTSS历史观察结果与未来数据之间的动态分布依赖性,并将依赖性作为时间条件分布推断以利用潜在变量。具体而言,一种新型的时间鹰派注意机制代表了随后将其馈入馈电网络的时间因素,以估计潜在变量的先前高斯分布。时间因素的表示进一步动态地调整了基于变压器的编码器和解码器的结构,以利用门控注意机制来变化。此外,我们引入条件连续归一化流量,以将先前的高斯转化为复杂且无形式的分布,以促进对时间条件分布的柔性推断。在六个现实世界的MTS数据集上进行的广泛实验表明,与最先进的MTS预测基线相比,TCVAE的出色鲁棒性和有效性。我们通过在现实世界中的多方面案例研究和可视化来进一步说明TCVAE的适用性。
Due to the non-stationary nature, the distribution of real-world multivariate time series (MTS) changes over time, which is known as distribution drift. Most existing MTS forecasting models greatly suffer from distribution drift and degrade the forecasting performance over time. Existing methods address distribution drift via adapting to the latest arrived data or self-correcting per the meta knowledge derived from future data. Despite their great success in MTS forecasting, these methods hardly capture the intrinsic distribution changes, especially from a distributional perspective. Accordingly, we propose a novel framework temporal conditional variational autoencoder (TCVAE) to model the dynamic distributional dependencies over time between historical observations and future data in MTSs and infer the dependencies as a temporal conditional distribution to leverage latent variables. Specifically, a novel temporal Hawkes attention mechanism represents temporal factors subsequently fed into feed-forward networks to estimate the prior Gaussian distribution of latent variables. The representation of temporal factors further dynamically adjusts the structures of Transformer-based encoder and decoder to distribution changes by leveraging a gated attention mechanism. Moreover, we introduce conditional continuous normalization flow to transform the prior Gaussian to a complex and form-free distribution to facilitate flexible inference of the temporal conditional distribution. Extensive experiments conducted on six real-world MTS datasets demonstrate the TCVAE's superior robustness and effectiveness over the state-of-the-art MTS forecasting baselines. We further illustrate the TCVAE applicability through multifaceted case studies and visualization in real-world scenarios.