论文标题

让我检查示例:通过明确模仿增强演示学习

Let Me Check the Examples: Enhancing Demonstration Learning via Explicit Imitation

论文作者

Wang, Sirui, Wei, Kaiwen, Zhang, Hongzhi, Li, Yuntao, Wu, Wei

论文摘要

演示学习旨在通过在少数拍摄设置中提供回答的演示来指导及时的预测。尽管取得了令人鼓舞的结果,但现有的工作仅将响应的示例与及时模板(包括原始上下文)相连,而无需任何其他操作,而忽略了及时示意的依赖性。此外,先前的研究发现,随机替换示威的标签会极大地损害性能,这表明该模型无法正确地了解示威活动所带来的知识。受人类学习过程的启发,在本文中,我们介绍了模仿演示学习(模仿),以通过明确模仿人类审查行为来加强演示学习,其中包括:(1)对比度学习机制,以专注于类似的演示。 (2)证明标签重新预测方法以合并已知知识。实验结果表明,我们提出的方法在14个分类中心中有11个实现了最先进的性能。进一步的研究还证明,模仿 - demo加强了迅速与示威之间的关联,这可以为探索示范学习的工作方式提供基础。

Demonstration learning aims to guide the prompt prediction via providing answered demonstrations in the few shot settings. Despite achieving promising results, existing work only concatenates the answered examples as demonstrations to the prompt template (including the raw context) without any additional operation, neglecting the prompt-demonstration dependencies. Besides, prior research found that randomly replacing the labels of demonstrations marginally hurts performance, illustrating that the model could not properly learn the knowledge brought by the demonstrations. Inspired by the human learning process, in this paper, we introduce Imitation DEMOnstration Learning (Imitation-Demo) to strengthen demonstration learning via explicitly imitating human review behaviour, which includes: (1) contrastive learning mechanism to concentrate on the similar demonstrations. (2) demonstration-label re-prediction method to consolidate known knowledge. Experiment results show that our proposed method achieves state-of-the-art performance on 11 out of 14 classification corpora. Further studies also prove that Imitation-Demo strengthen the association between prompt and demonstrations, which could provide the basis for exploring how demonstration learning works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源