论文标题

使用混合动力AI进行智能的交通监控

Intelligent Traffic Monitoring with Hybrid AI

论文作者

Qasemi, Ehsan, Oltramari, Alessandro

论文摘要

智能交通监控(ITMO)的挑战因大量和模式的数据以及对最先进的(SOTA)推理者的利用的需求而加剧。我们制定了ITMO的问题,并引入了Hans,这是一种用于多模式上下文理解的神经符号结构及其在ITMO中的应用。汉斯利用知识图技术作为交通域中SOTA推理的骨干。通过案例研究,我们展示了汉斯如何应对与流量监控相关的挑战,同时能够与广泛的推理方法集成

Challenges in Intelligent Traffic Monitoring (ITMo) are exacerbated by the large quantity and modalities of data and the need for the utilization of state-of-the-art (SOTA) reasoners. We formulate the problem of ITMo and introduce HANS, a neuro-symbolic architecture for multi-modal context understanding, and its application to ITMo. HANS utilizes knowledge graph technology to serve as a backbone for SOTA reasoning in the traffic domain. Through case studies, we show how HANS addresses the challenges associated with traffic monitoring while being able to integrate with a wide range of reasoning methods

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源