论文标题
基于扫描的浸入式等几何流量分析
Scan-based immersed isogeometric flow analysis
论文作者
论文摘要
本章回顾了我们的团队在基于扫描的浸润等质分析方面为流问题进行的工作。为了利用对基于复杂的基于复杂的域的等几何分析的优势特性,已经进行了各种创新:(i)已经开发了一种基于样条的分割策略来提取直接从扫描数据中直接从扫描数据中浸入的分析的几何形状; (ii)已经提出了针对Stokes问题的稳定的等阶速度压力公式,以在浸入式域上取得稳定的结果; (iii)已经开发了一种自适应整合正交程序来提高计算效率; (iv)已经制定了一种网格完善策略来捕获先验未知位置的小特征,而没有大大增加基于扫描的分析工作流程的计算成本。我们回顾了每项创新背后的关键思想,并使用我们的工作中的一系列仿真结果来说明这些思想。复制了基于患者的基于患者的分析案例,以说明这些创新如何在复杂扫描数据上模拟流量问题。
This chapter reviews the work conducted by our team on scan-based immersed isogeometric analysis for flow problems. To leverage the advantageous properties of isogeometric analysis on complex scan-based domains, various innovations have been made: (i) A spline-based segmentation strategy has been developed to extract a geometry suitable for immersed analysis directly from scan data; (ii) A stabilized equal-order velocity-pressure formulation for the Stokes problem has been proposed to attain stable results on immersed domains; (iii) An adaptive integration quadrature procedure has been developed to improve computational efficiency; (iv) A mesh refinement strategy has been developed to capture small features at a priori unknown locations, without drastically increasing the computational cost of the scan-based analysis workflow. We review the key ideas behind each of these innovations, and illustrate these using a selection of simulation results from our work. A patient-specific scan-based analysis case is reproduced to illustrate how these innovations enable the simulation of flow problems on complex scan data.