论文标题

分数量子厅电导率的拓扑量化

Topological quantization of Fractional Quantum Hall conductivity

论文作者

Miller, J., Zubkov, M. A.

论文摘要

我们考虑相互作用电子系统中的量子厅效应(QHE)。我们的形式主义对于在存在外部磁场以及具有非平凡带拓扑的系统的系统中有效。也就是说,得出的电导率的表达对于普通QHE和内在的异常QHE都是有效的。电导率的表达适用于可能以任意方式变化并考虑障碍的外部田间。假定系统的基态是退化的。我们将QHE电导率表示为$ \ frac {e^2} {h} \ times \ frac {\ cal n} {k} $,其中$ k $是基态的退化,而$ \ cal n $是由Wigner -wigner -wigner -transpered -transport -dromported多人 - 腿部 - 腿部 - 腿部 - 腿绿色功能组成。 $ \ cal n $需要离散值,这导致了分数QHE电导率的量化。

We consider the quantum Hall effect (QHE) in a system of interacting electrons. Our formalism is valid for systems in the presence of an external magnetic field, as well as for systems with a nontrivial band topology. That is, the expressions for the conductivity derived are valid for both the ordinary QHE and for the intrinsic anomalous QHE. The expression for the conductivity applies to external fields that may vary in an arbitrary way, and takes into account disorder. It is assumed that the ground state of the system is degenerate. We represent the QHE conductivity as $\frac{e^2}{h} \times \frac{\cal N}{K}$, where $K$ is the degeneracy of the ground state, while $\cal N$ is the topological invariant composed of the Wigner - transformed multi - leg Green functions. $\cal N$ takes discrete values, which gives rise to quantization of the fractional QHE conductivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源