论文标题

距离传播的挖掘:后代同元,财产$ z $和可达性

Distance-transitive digraphs: descendant-homogeneity, property $Z$ and reachability

论文作者

Amato, Daniela A.

论文摘要

我们调查了无限传输的挖掘的类别$ d $ d $有限的价值。我们表明,如果$ d $在这样的班级中是一个弱后代同质的,那么(1)$ d $具有财产$ z $,并且可及性关系并不普遍;或(2)$ d $没有属性$ z $,可达性关系是通用的,$ d $具有无限的价值。同样,我们表明,在高度弧度传播的挖掘物的背景下证明了早期的结果,在距离转换的条件下。最后,我们对类别距离传播的弱后代均匀的挖掘的类子进行了描述,其可达性关系并非通用。

We investigate the class of infinite distance-transitive digraphs $D$ of finite out-valency. We show that if $D$ is a weakly descendant-homogeneous in such a class then either (1) $D$ has property $Z$ and the reachability relation is not universal; or (2) $D$ does not have property $Z$, the reachability relation is universal and $D$ has infinite in-valency. Also, we show that earlier results, proved in the context of highly-arc-transitive digraphs, hold under the weaker condition of distance-transitivity. Finally, we give a description of a subclass of the class distance-transitive weakly descendant-homogeneous digraphs for which the reachability relation is not universal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源