论文标题

单向计数器自动机的可逆计算

Reversible Computations of One-Way Counter Automata

论文作者

Kutrib, Martin, Malcher, Andreas

论文摘要

确定性的单向时间限制的多场自动机是根据其执行可逆计算的能力研究的,这意味着自动机也是向后确定性的,因此能够唯一地来回计算。我们研究了此类设备的计算能力,并在超多个单位时间的不可逆和可逆K-Counter自动机之间获得分离结果。在指数时间内,我们还获得了相对于计数器数量的无限和紧密的层次结构。该层次结构显示为Kolmogorov的复杂性和不可压缩论证。通过这种方式,通过传递,我们也可以证明该层次结构也适用于普通的计数器自动机。从这里我们认为接受条件较弱的意义上说,这改善了普通反击的已知层次结构。然后,事实证明,K+1可逆计数器不比K普通计数器好,反之亦然。最后,如果至少提供了两个计数器,几乎所有通常研究的可判定性问题是不可决定的,甚至不可完成可逆的多场自动机。

Deterministic one-way time-bounded multi-counter automata are studied with respect to their ability to perform reversible computations, which means that the automata are also backward deterministic and, thus, are able to uniquely step the computation back and forth. We study the computational capacity of such devices and obtain separation results between irreversible and reversible k-counter automata for superpolynomial time. For exponential time we obtain moreover an infinite and tight hierarchy with respect to the number of counters. This hierarchy is shown with Kolmogorov complexity and incompressibility arguments. In this way, on passing we can prove this hierarchy also for ordinary counter automata. This improves the known hierarchy for ordinary counter automata in the sense that here we consider a weaker acceptance condition. Then, it turns out that k+1 reversible counters are not better than k ordinary counters and vice versa. Finally, almost all usually studied decidability questions turn out to be undecidable and not even semidecidable for reversible multi-counter automata, if at least two counters are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源