论文标题
平面流的非平衡Langevin动力学的收敛
Convergence of Nonequilibrium Langevin Dynamics for Planar Flows
论文作者
论文摘要
我们证明,不可压缩的二维非平衡Langevin动力学(NELD)将指数级收敛到稳态极限周期。我们使用自动形态重新映射周期性边界条件(PBC)技术,例如Lees-Edwards PBC和Kraynik-Reinelt PBC,以分别处理剪切流量和平面延长流动。在Lagrangian坐标中重写NELD后,使用类似于[R.的技术显示了收敛性。 Joubaud,G。A。Pavliotis和G. Stoltz,2014年]。
We prove that incompressible two dimensional nonequilibrium Langevin dynamics (NELD) converges exponentially fast to a steady-state limit cycle. We use automorphism remapping periodic boundary conditions (PBCs) techniques such as Lees-Edwards PBCs and Kraynik-Reinelt PBCs to treat respectively shear flow and planar elongational flow. After rewriting NELD in Lagrangian coordinates, the convergence is shown using a technique similar to [R. Joubaud, G. A. Pavliotis, and G. Stoltz,2014].