论文标题
基于预测的一声动态停车定价
Prediction-based One-shot Dynamic Parking Pricing
论文作者
论文摘要
许多美国都市城市因严重的停车位短缺而臭名昭著。为此,我们提出了一个主动的预测驱动的优化框架,以动态调整停车价格。我们使用最先进的深度学习技术,例如神经普通微分方程(节点)来设计我们未来的停车占用率预测模型,鉴于历史占用率和价格信息。由于节点的持续和射击特征,因此,在给定预训练的预测模型的情况下,我们设计了一种单次价格优化方法,该方法只需要一个迭代才能找到最佳解决方案。换句话说,我们优化了预先训练的预测模型的价格输入,以实现停车位的目标占用率。我们对在旧金山和西雅图收集的数据进行了实验多年。与各种时间或时空预测模型相比,我们的预测模型显示出最佳准确性。我们的单发优化方法在搜索时间方面极大地优于其他黑框和白色框搜索方法,并且始终返回最佳价格解决方案。
Many U.S. metropolitan cities are notorious for their severe shortage of parking spots. To this end, we present a proactive prediction-driven optimization framework to dynamically adjust parking prices. We use state-of-the-art deep learning technologies such as neural ordinary differential equations (NODEs) to design our future parking occupancy rate prediction model given historical occupancy rates and price information. Owing to the continuous and bijective characteristics of NODEs, in addition, we design a one-shot price optimization method given a pre-trained prediction model, which requires only one iteration to find the optimal solution. In other words, we optimize the price input to the pre-trained prediction model to achieve targeted occupancy rates in the parking blocks. We conduct experiments with the data collected in San Francisco and Seattle for years. Our prediction model shows the best accuracy in comparison with various temporal or spatio-temporal forecasting models. Our one-shot optimization method greatly outperforms other black-box and white-box search methods in terms of the search time and always returns the optimal price solution.