论文标题

基于灰色图像和稀疏深度图的航天器深度完成

Spacecraft depth completion based on the gray image and the sparse depth map

论文作者

Liu, Xiang, Wang, Hongyuan, Yan, Zhiqiang, Chen, Yu, Chen, Xinlong, Chen, Weichun

论文摘要

感觉到航天器的三维(3D)结构是成功执行许多轨道空间任务的先决条件,并且可以为许多下游视觉算法提供关键的输入。在本文中,我们建议使用光检测和范围传感器(LIDAR)和单眼相机感知航天器的3D结构。为此,提出了航天器深度完成网络(SDCNET),以根据灰色图像和稀疏深度图回收密集的深度图。具体而言,SDCNET将对象级航天器的深度完成任务分解为前景分割子任务和前景深度完成子任务,该任务首先将航天器区域段划分,然后在段前景区域执行深度完成。通过这种方式,有效地避免了对前景航天器深度完成的背景干扰。此外,还提出了一个基于注意力的特征融合模块,以汇总不同输入之间的互补信息,该信息可以按顺序推论沿通道沿着不同特征的不同特征之间的相关性。此外,还提出了四个指标来评估对象级的深度完成性能,这可以更直观地反映航天器深度完成结果的质量。最后,构建了一个大规模的卫星深度完成数据集,用于训练和测试航天器深度完成算法。数据集上的经验实验证明了拟议的SDCNET的有效性,该SDCNET达到了0.25亿的平均绝对误差,而有0.759m的平均绝对截断误差,通过较大的边缘超过了先进的方法。航天器姿势估计实验也基于深度完成结果进行,实验结果表明,预测的密集深度图可以满足下游视觉任务的需求。

Perceiving the three-dimensional (3D) structure of the spacecraft is a prerequisite for successfully executing many on-orbit space missions, and it can provide critical input for many downstream vision algorithms. In this paper, we propose to sense the 3D structure of spacecraft using light detection and ranging sensor (LIDAR) and a monocular camera. To this end, Spacecraft Depth Completion Network (SDCNet) is proposed to recover the dense depth map based on gray image and sparse depth map. Specifically, SDCNet decomposes the object-level spacecraft depth completion task into foreground segmentation subtask and foreground depth completion subtask, which segments the spacecraft region first and then performs depth completion on the segmented foreground area. In this way, the background interference to foreground spacecraft depth completion is effectively avoided. Moreover, an attention-based feature fusion module is also proposed to aggregate the complementary information between different inputs, which deduces the correlation between different features along the channel and the spatial dimension sequentially. Besides, four metrics are also proposed to evaluate object-level depth completion performance, which can more intuitively reflect the quality of spacecraft depth completion results. Finally, a large-scale satellite depth completion dataset is constructed for training and testing spacecraft depth completion algorithms. Empirical experiments on the dataset demonstrate the effectiveness of the proposed SDCNet, which achieves 0.25m mean absolute error of interest and 0.759m mean absolute truncation error, surpassing state-of-the-art methods by a large margin. The spacecraft pose estimation experiment is also conducted based on the depth completion results, and the experimental results indicate that the predicted dense depth map could meet the needs of downstream vision tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源