论文标题

ECHOGNN:图形神经网络的可解释的射血分数估计

EchoGNN: Explainable Ejection Fraction Estimation with Graph Neural Networks

论文作者

Mokhtari, Masoud, Tsang, Teresa, Abolmaesumi, Purang, Liao, Renjie

论文摘要

射血分数(EF)是心脏功能的关键指标,可以鉴定患有心脏衰竭等心脏功能障碍的患者。通过手动追踪左心室并估算其在某些帧上的体积,可以从被称为超声心动图(ECHO)的心脏超声视频估计。由于手动过程和视频质量的变化,这些估计表现出很高的观察者间变异性。这种不准确的来源和对快速评估的需求需要可靠且可解释的机器学习技术。在这项工作中,我们介绍了基于图神经网络(GNN)的模型ECHOGNN,以从Echo视频中估算EF。我们的模型首先从一个或多个Echo Cine系列的框架中删除潜在的回声图。然后,它估计了该图的节点和边缘的权重,表明各个框架的重要性有助于EF估计。 GNN回归器使用此加权图来预测EF。我们在定性和定量上表明,学到的图形权重通过识别临界帧进行EF估计提供了解释性,可用于确定何时需要人干预。在Echonet-Dynamic公共EF数据集上,ECHOGNN实现了与最新状态相提并论的EF预测性能,并提供了解释性,考虑到此任务中固有的高观察者间变异性至关重要。

Ejection fraction (EF) is a key indicator of cardiac function, allowing identification of patients prone to heart dysfunctions such as heart failure. EF is estimated from cardiac ultrasound videos known as echocardiograms (echo) by manually tracing the left ventricle and estimating its volume on certain frames. These estimations exhibit high inter-observer variability due to the manual process and varying video quality. Such sources of inaccuracy and the need for rapid assessment necessitate reliable and explainable machine learning techniques. In this work, we introduce EchoGNN, a model based on graph neural networks (GNNs) to estimate EF from echo videos. Our model first infers a latent echo-graph from the frames of one or multiple echo cine series. It then estimates weights over nodes and edges of this graph, indicating the importance of individual frames that aid EF estimation. A GNN regressor uses this weighted graph to predict EF. We show, qualitatively and quantitatively, that the learned graph weights provide explainability through identification of critical frames for EF estimation, which can be used to determine when human intervention is required. On EchoNet-Dynamic public EF dataset, EchoGNN achieves EF prediction performance that is on par with state of the art and provides explainability, which is crucial given the high inter-observer variability inherent in this task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源