论文标题

气道树建模使用双通道3D UNET 3+与船只之前

Airway Tree Modeling Using Dual-channel 3D UNet 3+ with Vesselness Prior

论文作者

Chien, Hsiang-Chin, Wang, Ching-Ping, Chen, Jung-Chih, Lee, Chia-Yen

论文摘要

肺气道树建模对于诊断肺部疾病至关重要,特别是对于X射线计算机断层扫描(CT)。在CT图像上的气道树建模可以为专家提供3维测量(例如壁厚等)。此信息可以极大地帮助诊断诸如慢性阻塞性肺疾病等肺部疾病[1-4]。许多学者尝试了各种方法来建模肺气道树,可以根据其性质将其分为两个主要类别。也就是说,基于模型的方法和深度学习方法。基于典型的模型方法的性能通常取决于模型参数的手动调整,这可能是其优点和缺点。优势是它不需要大量的培训数据,这可能对像医学成像这样的小型数据集有益。另一方面,基于模型的性能可能是错误的[5,6]。 近年来,深度学习在医学图像处理领域取得了良好的结果,许多学者在医学图像分割中使用了基于UNET的方法[7-11]。在UNET的所有变化中,UNET 3+ [11]具有相对较好的结果,与UNET的其余部分相比。因此,为了进一步提高肺气道树建模的准确性,这项研究将Frangi Filter [5]与UNET 3+ [11]相结合,以开发双通道3D UNET 3+。 Frangi滤光片用于提取类似容器的特征。然后,类似于血管的功能用作输入,以指导双通道UNET 3+训练和测试程序。

The lung airway tree modeling is essential to work for the diagnosis of pulmonary diseases, especially for X-Ray computed tomography (CT). The airway tree modeling on CT images can provide the experts with 3-dimension measurements like wall thickness, etc. This information can tremendously aid the diagnosis of pulmonary diseases like chronic obstructive pulmonary disease [1-4]. Many scholars have attempted various ways to model the lung airway tree, which can be split into two major categories based on its nature. Namely, the model-based approach and the deep learning approach. The performance of a typical model-based approach usually depends on the manual tuning of the model parameter, which can be its advantages and disadvantages. The advantage is its don't require a large amount of training data which can be beneficial for a small dataset like medical imaging. On the other hand, the performance of model-based may be a misconcep-tion [5,6]. In recent years, deep learning has achieved good results in the field of medical image processing, and many scholars have used UNet-based methods in medical image segmentation [7-11]. Among all the variation of UNet, the UNet 3+ [11] have relatively good result compare to the rest of the variation of UNet. Therefor to further improve the accuracy of lung airway tree modeling, this study combines the Frangi filter [5] with UNet 3+ [11] to develop a dual-channel 3D UNet 3+. The Frangi filter is used to extracting vessel-like feature. The vessel-like feature then used as input to guide the dual-channel UNet 3+ training and testing procedures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源