论文标题

螺旋通货膨胀相关因子:部分梅林 - 巴恩斯和引导程序方程

Helical Inflation Correlators: Partial Mellin-Barnes and Bootstrap Equations

论文作者

Qin, Zhehan, Xianyu, Zhong-Zhi

论文摘要

在轴突型耦合的通货膨胀期间,巨大的旋转颗粒在膨胀期间获得了螺旋性依赖性化学电位。这样的旋转场可以介导相大的充气相关因子,我们称之为螺旋通胀相关因子。螺旋充气相关因子近似规模不变,DS增强破裂,奇偶校差,并且是宇宙撞机物理学的有前途的可观察到的。在这项工作中,我们为四点螺旋通胀相关因子提供了完整的分析结果,并具有大量旋转颗粒的树级交换,包括光滑背景和振荡信号。我们以两种独立的方式计算散装的Schwinger-Keldysh积分,包括部分Mellin-Barnes表示和求解引导程序。我们还为具有巨大的标量或螺旋旋转交换的三点函数提供了新的封闭形式的分析结果。分析结果使我们能够具体有效地探索依赖螺旋性化学潜力的现象学后果。特别是,我们表明化学势可以指数增强局部和非局部类型的振荡信号,但仅以相当轻微的方式影响背景。我们的结果将DE Sitter Bootstrap程序扩展到包括Sitter Boosts的非扰动破坏。我们的结果还明确验证了最近提出的宇宙撞机信号的切割规则。

Massive spinning particles acquire helicity-dependent chemical potentials during the inflation from axion-type couplings. Such spinning fields can mediate sizable inflaton correlators which we call the helical inflation correlators. Helical inflaton correlators are approximately scale invariant, dS boost breaking, parity-violating, and are promising observables of cosmological collider physics. In this work, we present complete and analytical results for 4-point helical inflation correlators with tree-level exchanges of massive spinning particles, including both the smooth background and the oscillatory signals. We compute the bulk Schwinger-Keldysh integrals in two independent ways, including the partial Mellin-Barnes representation and solving bootstrap equations. We also present new closed-form analytical results for 3-point functions with massive scalar or helical spinning exchanges. The analytical results allow us to concretely and efficiently explore the phenomenological consequences of helicity-dependent chemical potentials. In particular, we show that the chemical potential can exponentially enhance oscillatory signals of both local and nonlocal types, but only affects the background in a rather mild way. Our results extend the de Sitter bootstrap program to include nonperturbative breaking of de Sitter boosts. Our results also explicitly verify the recently proposed cutting rule for cosmological collider signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源