论文标题

机器学习指导非氧化石榴石的高通量搜索

Machine Learning guided high-throughput search of non-oxide garnets

论文作者

Schmidt, Jonathan, Wang, Haichen, Schmidt, Georg, Marques, Miguel

论文摘要

自从人类文明的早期阶段就知道的石榴石已经在现代技术中发现了重要的应用,包括磁性限制,Spintronics,Lithium Patteries等。绝大多数实验已知的石榴石是氧化物,而探索(实验或理论)在其余化学空间中的探索(实验性或理论)在其余化学空间中受到限制。一个关键问题是石榴石结构具有较大的原始单位单元格,需要大量的计算资源。为了对新石榴石的完整化学空间进行全面的搜索,我们将图形神经网络中的最新进展与高通量计算结合在一起。我们应用机器学习模型来在系统密度功能的计算之前识别电势(meta-)稳定的石榴石系统以验证预测。通过这种方式,我们发现了600多个三元石榴石,距离凸壳以下的100〜MEV/原子具有各种物理和化学特性。这包括硫化物,氮化物和卤化物石榴石。为此,我们分析电子结构并讨论电子带隙和电荷平衡的值之间的联系。

Garnets, known since the early stages of human civilization, have found important applications in modern technologies including magnetorestriction, spintronics, lithium batteries, etc. The overwhelming majority of experimentally known garnets are oxides, while explorations (experimental or theoretical) for the rest of the chemical space have been limited in scope. A key issue is that the garnet structure has a large primitive unit cell, requiring an enormous amount of computational resources. To perform a comprehensive search of the complete chemical space for new garnets,we combine recent progress in graph neural networks with high-throughput calculations. We apply the machine learning model to identify the potential (meta-)stable garnet systems before systematic density-functional calculations to validate the predictions. In this way, we discover more than 600 ternary garnets with distances to the convex hull below 100~meV/atom with a variety of physical and chemical properties. This includes sulfide, nitride and halide garnets. For these, we analyze the electronic structure and discuss the connection between the value of the electronic band gap and charge balance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源