论文标题
打击数据筛查隐式仇恨言语分类的高度差异
Combating high variance in Data-Scarce Implicit Hate Speech Classification
论文作者
论文摘要
仇恨言语分类一直是自然语言处理中的一个长期问题。但是,即使有许多仇恨言论检测方法,它们通常忽略了许多仇恨陈述,因为它们在自然界中是隐含的。开发数据集以帮助隐性仇恨言语分类的任务伴随着自己的挑战;困难是语言上的细微差别,改变了构成仇恨言论的定义以及劳动密集型注释此类数据的过程。这导致了可用于训练和测试此类系统的数据稀缺,当使用基于参数的变压器模型来解决该问题时,这会引起较高的差异问题。在本文中,我们探讨了各种优化和正则化技术,并开发了一种基于罗伯塔的新型模型,该模型可实现最先进的性能。
Hate speech classification has been a long-standing problem in natural language processing. However, even though there are numerous hate speech detection methods, they usually overlook a lot of hateful statements due to them being implicit in nature. Developing datasets to aid in the task of implicit hate speech classification comes with its own challenges; difficulties are nuances in language, varying definitions of what constitutes hate speech, and the labor-intensive process of annotating such data. This had led to a scarcity of data available to train and test such systems, which gives rise to high variance problems when parameter-heavy transformer-based models are used to address the problem. In this paper, we explore various optimization and regularization techniques and develop a novel RoBERTa-based model that achieves state-of-the-art performance.