论文标题

Lattice QCD实时动力学的贝叶斯推断

Bayesian inference of real-time dynamics from lattice QCD

论文作者

Rothkopf, Alexander

论文摘要

核物质动力学特性的计算,从核和核的parton分布函数到夸克 - 杜伦等离子体中的特性,构成了现代理论物理学的核心目标。这种实时物理学通常会违反扰动治疗,迄今为止最成功的策略是部署晶格QCD模拟。这些数值计算基于蒙特 - 卡洛采样,并在人工欧几里得时代制定。实时物理学最方便地从光谱函数方面进行了配制,这些函数隐藏在一个不适合的反问题后面的晶格QCD中。我将根据贝叶斯推论从晶格QCD模拟中提取光谱函数的最新方法,并强调先前的域知识的重要性,这对于规范原本不足的提取任务至关重要。鉴于贝叶斯推论使我们能够在观察结果和先验知识中明确说明不确定性,因此如今可以对提取的光谱函数中的总不确定性进行系统的估计。贝叶斯重建方法(BR)用于频谱功能提取方法的两种实现,一种用于MAP点估计值,一种基于开放访问蒙特卡洛采样器的实现。我将简要介绍使用机器学习来用于光谱功能重建的使用,并讨论它带给贝叶斯社区的一些新洞察力。

The computation of dynamical properties of nuclear matter, ranging from parton distribution functions of nucleons and nuclei to transport properties in the quark-gluon plasma, constitutes a central goal of modern theoretical physics. This real-time physics often defies a perturbative treatment and the most successful strategy so far is to deploy lattice QCD simulations. These numerical computations are based on Monte-Carlo sampling and formulated in an artificial Euclidean time. Real-time physics is most conveniently formulated in terms of spectral functions, which are hidden in lattice QCD behind an ill-posed inverse problem. I will discuss the current methods state-of-the art in the extraction of spectral functions from lattice QCD simulations, based on Bayesian inference and emphasize the importance of prior domain knowledge, vital to regularizing the otherwise ill-posed extraction task. With Bayesian inference allowing us to make explicit the uncertainty in both observations and in our prior knowledge, a systematic estimation of the total uncertainties in the extracted spectral functions is nowadays possible. Two implementations of the Bayesian Reconstruction (BR) method for spectral function extraction, one for MAP point estimates and one based on an open access Monte-Carlo sampler are provided.I will briefly touch on the use of machine learning for spectral function reconstruction and discuss some new insight it has brought to the Bayesian community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源