论文标题

部分可观测时空混沌系统的无模型预测

naab: A ready-to-use plug-and-play corpus for Farsi

论文作者

Sabouri, Sadra, Rahmati, Elnaz, Gooran, Soroush, Sameti, Hossein

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The rise of large language models (LLMs) has transformed numerous natural language processing (NLP) tasks, yet their performance in low and mid-resource languages, such as Farsi, still lags behind resource-rich languages like English. To address this gap, we introduce naab, the largest publicly available, cleaned, and ready-to-use Farsi textual corpus. naab consists of 130GB of data, comprising over 250 million paragraphs and 15 billion words. Named after the Farsi word NAAB (meaning "pure" or "high-grade"), this corpus is openly accessible via Hugging Face, offering researchers a valuable resource for Farsi NLP tasks. In addition to naab, we provide naab-raw, an unprocessed version of the dataset, along with a pre-processing toolkit that allows users to clean their custom corpora. These resources empower NLP researchers and practitioners, particularly those focusing on low-resource languages, to improve the performance of LLMs in their respective domains and bridge the gap between resource-rich and resource-poor languages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源