论文标题

播客摘要评估:评估摘要评估方法的资源

Podcast Summary Assessment: A Resource for Evaluating Summary Assessment Methods

论文作者

Manakul, Potsawee, Gales, Mark J. F.

论文摘要

自动汇总评估对于机器生成和人为生产的摘要都有用。自动评估给定文档的摘要文本启用,例如,摘要生成系统开发和检测不适当的摘要。摘要评估可以以多种模式进行:排名摘要生成系统;对特定文档的排名;并在绝对规模上估算文档 - 萨华的质量。带有注释的现有数据集用于摘要评估,通常基于新闻摘要数据集,例如CNN/DailyMail或Xsum。在这项工作中,我们描述了一个新的数据集,即播客摘要评估语料库,这是由TREC2020的人类专家评估的播客摘要集。与现有的摘要评估数据相比,该数据集具有两个独特的方面:(i)长输入,基于语音播客的文档; (ii)有机会在播客语料库中检测不适当的参考摘要。首先,我们检查了现有的评估方法,包括无模型和基于模型的方法,并为此长输入摘要评估数据集提供基准结果。其次,为了过滤参考参考文献配对以进行培训,我们应用了数据选择的摘要评估。这两个方面的实验结果为摘要评估和发电任务提供了有趣的见解。播客摘要评估数据可用。

Automatic summary assessment is useful for both machine-generated and human-produced summaries. Automatically evaluating the summary text given the document enables, for example, summary generation system development and detection of inappropriate summaries. Summary assessment can be run in a number of modes: ranking summary generation systems; ranking summaries of a particular document; and estimating the quality of a document-summary pair on an absolute scale. Existing datasets with annotation for summary assessment are usually based on news summarization datasets such as CNN/DailyMail or XSum. In this work, we describe a new dataset, the podcast summary assessment corpus, a collection of podcast summaries that were evaluated by human experts at TREC2020. Compared to existing summary assessment data, this dataset has two unique aspects: (i) long-input, speech podcast based, documents; and (ii) an opportunity to detect inappropriate reference summaries in podcast corpus. First, we examine existing assessment methods, including model-free and model-based methods, and provide benchmark results for this long-input summary assessment dataset. Second, with the aim of filtering reference summary-document pairings for training, we apply summary assessment for data selection. The experimental results on these two aspects provide interesting insights on the summary assessment and generation tasks. The podcast summary assessment data is available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源