论文标题
算术Demailly近似定理
Arithmetic Demailly Approximation Theorem
论文作者
论文摘要
我们将Demailly近似定理从复杂的几何形状到Arakelov的几何形状进行概括。作为应用程序,让$ x/\ mathbb {q} $是一个不可或缺的投影量变化,$ \ edline n $是$ x $上的adelic line Line Bundle伪有效。假设$ \ overline {n} $相对半发射效果,这在[BAL21]中得到了证明。我们在附录中表明,在[yz22]的框架下,上述断言对于准标准品种上的Adelic Line束也是如此。
We generalize the Demailly approximation theorem from complex geometry to Arakelov geometry.As an application, let $X/\mathbb{Q}$ be an integral projective variety and $\overline N$ be an adelic line bundle on $X$, we prove that $\operatorname{ess}(\overline N) \geq 0$ $\Longrightarrow $ $\overline N$ pseudo-effective. This was proved in [Bal21], assuming $\overline{N}$ relatively semipositive. We show in the appendix that the above assertion is also true for adelic line bundles on quasi-projective varieties, under the framework of [YZ22].