论文标题

图表的最高度和光谱半径

Maximum degree and spectral radius of graphs in terms of size

论文作者

Wang, Zhiwen, Guo, Ji-Ming

论文摘要

关于图形图理论中重要的研究项目,对图形的(无标志性Laplacian)光谱半径的关系研究。分别用$ρ(g)$和$ q(g)$表示频谱半径和无标志性的laplacian光谱半径。令$ k \ ge 0 $为固定整数,而$ g $是大小$ m $的图。我们表明,如果$ρ(g)\ ge \ sqrt {m-k} $,则$ c_4 \ subseteq g $或$ k_ {1,m-k} \ subseteq g $。此外,我们证明,如果$ q(g)\ ge m-k $,则$ k_ {1,m-k} \ subseteq g $。这两个结果都扩大了一些已知结果。

Research on the relationship of the (signless Laplacian) spectral radius of a graph with its structure properties is an important research project in spectral graph theory. Denote by $ρ(G)$ and $q(G)$ the spectral radius and the signless Laplacian spectral radius of a graph $G$, respectively. Let $k\ge 0$ be a fixed integer and $G$ be a graph of size $m$ which is large enough. We show that if $ρ(G)\ge\sqrt{m-k}$, then $C_4\subseteq G$ or $K_{1,m-k}\subseteq G$. Furthermore, we prove that if $q(G)\ge m-k$, then $K_{1,m-k}\subseteq G$. Both these two results extend some known results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源