论文标题
订购和聚类方法之间的一致性
Consistency between ordering and clustering methods for graphs
论文作者
论文摘要
通常,通过聚类或订购将标签分配给每个元素,通常可以分析关系数据集。尽管聚类和排序方法都可以实现数据集的类似表征,但前者比后者更积极地研究了数据集,尤其是对于表示为图的数据。这项研究通过研究几种聚类和订购方法之间的方法学关系来填补这一空白,重点是光谱技术。此外,我们评估了聚类和排序方法的结果性能。为此,我们提出了一种称为标签连续性误差的度量,该度量通常量化了一组元素的序列和分区之间的一致性程度。基于合成和现实世界数据集,我们评估了订购方法标识模块结构和聚类方法标识带的结构的范围。
A relational dataset is often analyzed by optimally assigning a label to each element through clustering or ordering. While similar characterizations of a dataset would be achieved by both clustering and ordering methods, the former has been studied much more actively than the latter, particularly for the data represented as graphs. This study fills this gap by investigating methodological relationships between several clustering and ordering methods, focusing on spectral techniques. Furthermore, we evaluate the resulting performance of the clustering and ordering methods. To this end, we propose a measure called the label continuity error, which generically quantifies the degree of consistency between a sequence and partition for a set of elements. Based on synthetic and real-world datasets, we evaluate the extents to which an ordering method identifies a module structure and a clustering method identifies a banded structure.