论文标题
从平面部分II上有有限数量的点电荷的电场的零组的零集合的渐近方向
Asymptotic Directions for the Zero Sets of the Components of an Electrical Field from a Finite Number of Point Charges on the Plane Part II
论文作者
论文摘要
我们研究了平面$ \ Mathbb r^2 $的非平凡有限点电荷电场的零集的结构。我们建立了对零设置\ {x = 0 \}和$ \ {y = 0 \} $的方程式满足的方程式,我们表明,对于这两个零组,都只有有限的许多可能的渐近方向。我们怀疑\ {x = 0 \}的一组渐近方向以及$ \ {y = 0 \} $的渐近方向集(本质上)是不同的。
We study the structure of the zero set of a nontrivial finite point charge electrical field $F = (X,Y)$ in the plane $\mathbb R^2$. We establish equations satisfied by the possible directions for the zero sets \{X = 0\} and $\{Y = 0\}$ separately, and we show that there are only finitely many possible asymptotic directions for both of these zero sets. We suspect that the set of asymptotic directions for \{X = 0\} and the set of asymptotic directions for $\{Y = 0\}$ are (essentially) distinct.