论文标题

与深度学习方法相比,极端梯度提高收益率估计

Extreme Gradient Boosting for Yield Estimation compared with Deep Learning Approaches

论文作者

Huber, Florian, Yushchenko, Artem, Stratmann, Benedikt, Steinhage, Volker

论文摘要

在收获前的准确预测作物产量对于世界各地的作物物流,市场计划和食物分配至关重要。产量预测需要在延长的时间段内监测物候和气候特征,以模拟农作物发育中涉及的复杂关系。绕过世界各种卫星提供的遥感卫星图像是获取收益预测数据的廉价且可靠的方法。目前,收益率预测的领域由深度学习方法主导。尽管使用这些方法达到的精度是有希望的,但所需的数据量和``Black-Box''性质可以限制深度学习方法的应用。可以通过提出一条管道将遥感图像处理为基于特征的表示形式来克服局限性,该图像允许使用极端梯度提升(XGBoost)进行产量预测。与基于深度学习的最先进的收益率预测系统相比,对美国大豆产量预测的比较评估显示出了有希望的预测准确性。特征重要性将光线的近红外光谱视为我们模型中的重要特征。报告的结果暗示了XGBoost进行产量预测的能力,并鼓励对XGBoost进行未来的实验,以对世界各地的其他农作物进行产量预测。

Accurate prediction of crop yield before harvest is of great importance for crop logistics, market planning, and food distribution around the world. Yield prediction requires monitoring of phenological and climatic characteristics over extended time periods to model the complex relations involved in crop development. Remote sensing satellite images provided by various satellites circumnavigating the world are a cheap and reliable way to obtain data for yield prediction. The field of yield prediction is currently dominated by Deep Learning approaches. While the accuracies reached with those approaches are promising, the needed amounts of data and the ``black-box'' nature can restrict the application of Deep Learning methods. The limitations can be overcome by proposing a pipeline to process remote sensing images into feature-based representations that allow the employment of Extreme Gradient Boosting (XGBoost) for yield prediction. A comparative evaluation of soybean yield prediction within the United States shows promising prediction accuracies compared to state-of-the-art yield prediction systems based on Deep Learning. Feature importances expose the near-infrared spectrum of light as an important feature within our models. The reported results hint at the capabilities of XGBoost for yield prediction and encourage future experiments with XGBoost for yield prediction on other crops in regions all around the world.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源