论文标题

用$ l^p $ - $ l^q $的最大规律性方法与原始方程的数据同化

Data Assimilation to the Primitive Equations with $L^p$-$L^q$-based Maximal Regularity Approach

论文作者

Furukawa, Ken

论文摘要

在本文中,我们显示了$ l^p $ - $ l^q $最大规律性设置的数据同化数据同化的数学合理性。 我们证明,通过数据同化,原始方程的近似解决方案在BESOV空间上通过指数顺序$ B^{2/q} _ {q,p}(ω)$在周期性层域$ω= \ mathbb {t}^2}^2 \ times(-h,0)$中收敛到真实解决方案。

In this paper, we show mathematical justification of the data assimilation of nudging type in $L^p$-$L^q$ maximal regularity settings. We prove that the approximate solution of the primitive equations by data assimilation converges to the true solution with exponential order on the Besov space $B^{2/q}_{q,p}(Ω)$ in the periodic layer domain $Ω= \mathbb{T}^2 \times (-h, 0)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源