论文标题

触觉接触的半监督分离〜滑动引起的剪切的几何形状

Semi-Supervised Disentanglement of Tactile Contact~Geometry from Sliding-Induced Shear

论文作者

Gupta, Anupam K., Church, Alex, Lepora, Nathan F.

论文摘要

触觉是人类敏捷的基础。当模仿机器人触摸(尤其是使用软光学触觉传感器)时,由于运动依赖性剪切而遭受失真。这使触觉任务复杂化,例如形状重建和探索,需要有关接触几何的信息。在这项工作中,我们采用半监督的方法来删除剪切,同时保留仅接触信息。我们通过显示模型生成的未切除图像之间的匹配与它们的对应物之间的匹配来验证我们的方法。模型生成的未移动图像可忠实地重建剪切几何形状,并通过剪切掩盖,以及对物体姿势的强大估计,然后用于滑动探索和对几种平面形状的全面重建。我们表明,我们的半监督方法的性能与在所有验证任务中的全面监督效果相当,而监督的监督降低。因此,半监督的方法更加计算和标记样品效率。我们预计,它将对通过对剪切敏感的触觉执行的各种复杂的触觉探索和操纵任务具有广泛的适用性。

The sense of touch is fundamental to human dexterity. When mimicked in robotic touch, particularly by use of soft optical tactile sensors, it suffers from distortion due to motion-dependent shear. This complicates tactile tasks like shape reconstruction and exploration that require information about contact geometry. In this work, we pursue a semi-supervised approach to remove shear while preserving contact-only information. We validate our approach by showing a match between the model-generated unsheared images with their counterparts from vertically tapping onto the object. The model-generated unsheared images give faithful reconstruction of contact-geometry otherwise masked by shear, along with robust estimation of object pose then used for sliding exploration and full reconstruction of several planar shapes. We show that our semi-supervised approach achieves comparable performance to its fully supervised counterpart across all validation tasks with an order of magnitude less supervision. The semi-supervised method is thus more computational and labeled sample-efficient. We expect it will have broad applicability to wide range of complex tactile exploration and manipulation tasks performed via a shear-sensitive sense of touch.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源